Heterogeneity: From ASIC’s to Data Centers
Deep Learning: A case study

Sumit Sanyal
CEO

minds.ai
Technology Revolution:

Deep Neural Nets

- A new paradigm in programming
 - DNNs remarkably effective at tackling many problems
 - Designing new NN architectures as opposed to “programming”
 - Training as opposed to “compiling”
 - Trained weights as the “new” binaries

- Big Neural Nets required to process Big Data
 - Videos, images, speech and text
 - DNNs are significantly increasing recognition accuracies which have stagnated for decades
 - Used to structure Big Data
Why Now?

Perfect Storm

Applications
- Image recognition
- Machine vision
- Natural language processing
- Autonomous vehicles
- Facial recognition
- Fraud detection
- Epigenetics

Technology
- Google
- Facebook
- Baidu
- Twitter
- Amazon Web Services
- Microsoft

- Growth limited by availability of cheap Compute Cycles
- Neural net training algorithms (Hinton, LeCun, Kryzhevsky)
- Emergence of Cloud Programming Model (API's)

Why Now?
Neural network development

1. Make a guess at NN architecture
2. Train on labeled dataset
3. Run on training data, does it perform well?
 - Yes: DONE!
 - No: Design bigger network
4. Run on test data, does it perform well?
 - Yes: DONE!
 - No: Need more training data

- Iterate: Wait 1-7+ days
Deep Neural Nets require a lot of compute cycles!

An example – image classification:
- Ratio of (Compute cycles : IO bandwidth) significantly higher than non AI algorithms
- Training AlexNet (for image classification) requires \(\sim 27,000 \) flops/input data byte
- Training VGG \(\sim 150,000 \) flops/data byte

\[R^3 / R^2 \rightarrow \text{Volume (compute)} / \text{Surface(IO BW)} \]
- Significantly higher for Deep Nets

Power dissipation challenges
- Compute density limited by DC cooling capacity
- At \(1 \sim \mu W / MHz \) (current state-of-art in 28 nm) requires 300 Watts!

AI is no longer bored 😊
Neural Net Computations

- All Deep Neural Net implementations have the following properties
 - Small set of non-linear transforms
 - Small set of linear algebra primitives
 - Relatively modest dynamic range of weight/data values
 - Very regular/repetitive data flows
 - Only persistent memory requirement is for weights
 - Updated while learning, fixed for recognition

- Variance in the size of the net across applications is $>10^5$

Compute cycles will be commoditized; not computers!
7 levels of parallelism

- Instruction level – SIMD, VLIW etc.
- Thread level – warps
- Processor level – many cores
- Server level – many GPUs in a server
- Cluster level – many servers with high BW interconnect
- Data Center level
- Planet level 😊
ASICS for DNNs

- Exponential growth in Data Centers
 - Commoditization of Enterprise silicon
 - Traditional mobile players announcing ASICS for enterprise compute
- Higher demands for compute density
 - GPGPUs have won the first round
 - Dennardian scaling is breaking down
- Power dissipation will emerge as major challenge
 - Chip level, server level and DC level
Age of dark silicon

<table>
<thead>
<tr>
<th>Transistor property</th>
<th>Dennardian</th>
<th>Post Dennardian</th>
</tr>
</thead>
<tbody>
<tr>
<td># of transistors (Q)</td>
<td>S^2</td>
<td>S^2</td>
</tr>
<tr>
<td>Peak clock frequency (F)</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Capacitance (C)</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>Supply Voltage (V_{dd})</td>
<td>$1/S^2$</td>
<td>1</td>
</tr>
<tr>
<td>Dynamic Power (QFCV_{dd^2})</td>
<td>1</td>
<td>S^2</td>
</tr>
<tr>
<td>Active Silicon</td>
<td>1</td>
<td>$1/S^2$</td>
</tr>
</tbody>
</table>

S is the ratio of feature size between next generation processes
Heterogeneity in Enterprise silicon

- Dark silicon will drive heterogeneity
 - Multi core architectures with different Instruction Sets
 - Power aware scheduling across cores
 - Decreasing parts of the chip can run at full clock frequency

- Specialized silicon for server blades
 - Bridges to intra server and inter server communications
 - Last level caching support, caching across MPI
 - Distributed compute in network interfaces
7 levels of parallelism

- Instruction level – SIMD, VLIW etc.
- Thread level – warps
- Processor level – many cores
- Server level – many GPUs in a server
- Cluster level – many servers with high BW interconnect
- Data Center level
- Planet level 😊
Heterogeneity in Hyperscale

- Deep Learning is driving the **convergence** of High Performance Compute (HPC) and Hyperscale (Data Centers)
 - Traditional HPC ecosystems: expensive and bleeding edge
 - DC infrastructure: commodity and homogeneous
 - Single or dual CPU servers common

- All of this is changing
 - GPGPUs now common in DCs, initial resistance
 - InfiniBand penetration has reached a tipping point
 - Dense compute clusters require high bandwidth interconnects
Server Architectures

- Intra server vs. Inter server bandwidths
 - Inter server bandwidths will grow faster than intra server
 - Lead to larger, denser servers
 - 4 or more GPGPUs per server for DNN training jobs
 - Will co-exist with CPU based servers for search and database operations
- Many kinds of servers, one size fits all does not work
7 levels of parallelism

- Instruction level – SIMD, VLIW etc.
- Thread level – warps
- Processor level – many cores
- Server level – many GPUs in a server
- Cluster level – many servers with high BW interconnect
- Data Center level
- Planet level 😊
Data Center Architectures

- Computing super clusters
 - 10^5 variability in size of compute ‘jobs’
 - Large number of collocated servers running the same job
 - High BW, low latency interconnect
 - Clusters could grow to significant fraction of a Data Center
- Architecture of clusters will be hierarchical and heterogeneous
 - Edge servers for security and Data management
 - Dedicated RAID servers
 - Dedicated compute servers
 - Control and management nodes
- Multi DC training clusters for big models are technically feasible
 - Scientific community has performed trans continental simulations
Thank you.
Contacts

- Sumit Sanyal, Founder and CEO
 sumit@minds.ai

- Steve Kuo, Co-Founder
 steve@minds.ai
minds.ai
Accelerated Deep Learning