Analog Datasheet

Dual 12-bit, 2GHz Digital-to-Analog Converter IP

TSMC 28HPC Process

Overview

Cadence IP Factory delivers custom, synthesizable IP to support specific design requirements.

The **Cadence Dual 12-bit, 2GHz DAC IP** is a dual 12-bit DAC with differential outputs. Each DAC supports sustained conversion rates of 2GHz.

The **Cadence Dual 12-bit, 2GHz DAC IP** supports both single-ended CMOS and differential Current-Mode Logic (CML) clock inputs for maximum flexibility. It also has a 4:1 input data multiplexer to reduce data bandwidth from the high conversion rate used by the DACs to a rate usable by the system logic.

The **Cadence Dual 12-bit, 2GHz DAC IP** has clean, well-defined interfaces for easy incorporation into any system-on-chip (SoC) design. A Cadence-standard Analog Test Bus is included to facilitate preproduction testing.

Implemented on the TSMC 28HPC process, the **Cadence Dual 12-bit, 2GHz DAC IP** provides a cost-effective, power-efficient solution for demanding applications. It offers SoC implementers the advanced capabilities and support that not only meet, but exceed the requirements of high-performance designs.

The **Cadence Dual 12-bit, 2GHz DAC IP** is silicon-proven, and has been extensively validated.

Cadence IP Factory offers a comprehensive IP solution that is in volume production, and has been successfully implemented in many applications.

Key Features

- Dual 12-bit, 2GHz Digital-to-Analog Converters
- Small footprint
- Low power (typ. 74mW at 2GHz)
- Multi-level power-down mode
- Programmable 6-bit gain control
- Dynamic power-saving features
- Analog test bus for preproduction testing
- 4:1 input data multiplexer
Product Details

The Cadence Dual 12-bit, 2GHz DAC IP is a hard macro for the TSMC 28HPC process. Integrated low-capacitance I/O pads are available as an option.

The Cadence Dual 12-bit, 2GHz DAC IP supports conversion rates up to 2GHz. It is designed to easily integrate into any SoC design with clean, well-defined interfaces, and separate analog (1.8V) and digital (0.9V) domains.

FIFO Block

Each DAC in the Cadence Dual 12-bit, 2GHz DAC IP contains a FIFO Block to reduce noise on the output due to changes on the data inputs.

DAC and Timing Generator

Each DAC uses a current-steering architecture where the full scale output current can be configured by the user. External components, or built-in resistors, can be used to convert the output current to a voltage.

The Timing Generator allows selection between a single-ended CMOS clock, or a differential CML clock. Core and divided core clock outputs are also provided.

DAC Biasing and Gain Control

The Cadence Dual 12-bit, 2GHz DAC IP includes an internal bias resistor, and external bias input for setting the maximum full-scale output current of the DACs.

The internal bias resistor allows the DACs to drive the internal load resistors. Using the internal bias resistor enables a full-scale output voltage independent of resistor corner variations when the internal load resistors are chosen.

Benefits

• High conversion rate to digitize wide-bandwidth signals
• Small footprint
• Low-power—power can be dynamically reduced
• Straightforward integration
• 4:1 input data multiplexer—reduces system clock rate requirements

Related Products

• Dual 11-bit, 1.5GSps ADC IP, TSMC 28HPC

Cadence IP Factory

Cadence IP Factory can deliver various configurations of DAC IP to meet your design requirements.

With 10+ years of experience and 400+ successful designs in process nodes ranging from 180nm to 22nm, Cadence IP has been proven in everything from low-power MP3 players to leading edge supercomputers.

For more information, visit ip.cadence.com

Deliverables

• Standard integration views—timing, physical views, LEF, DRC, LVS, ANT
• GDSII layout
• Complete documentation customized to your specific configuration

Available Products

• Dual 12-bit, 2GHz DAC IP, TSMC 28HPC

The IP described in this document may only be taped out and manufactured at a TSMC approved manufacturing facility. Any IC developed from this IP Core must include layer 63 and any other tagging layers (including all tracking tags) as required by TSMC.

© 2014 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks of Cadence Design Systems, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

V2.2 09/14, IP no. IP9945