Master Controller IP for MIPI SoundWire

Overview

Today’s leading-edge mobile devices provide increasingly integrated functionality that enables growing volumes of content and video, more ways to control and interact, and longer battery life. The MIPI® Alliance defines semiconductor standards for mobile devices that support growing complexity and reduced device form factor.

The Cadence® IP Family for MIPI Protocols delivers area-optimized interface IP with the low power and high performance required for today’s leading-edge devices. One member of this family is the Cadence Master Controller IP for MIPI® SoundWireSM v1.1, providing low-cost, low-power connectivity for audio data transport and control.

Developed by experienced teams with industry-leading domain expertise and extensively validated with multiple hardware platforms. The Controller IP is engineered to quickly and easily integrate with other MIPI compliant IP.

The Controller IP is part of the comprehensive Cadence Design IP portfolio comprised of Interface, memory, analog, and system and peripheral IP.

Key Features

- MIPI compliant master controller with multi-lane capability
- Isochronous, TX- or RX-controlled, or fully asynchronous transport
- Configurable port, FIFO and interface features
- Bus command ownership - BREQ/BREL handshake
- Multi-entry command FIFO for READ/WRITE/PING commands
- Automatic PING generation
- AHB-Lite interface for control register access
- Bi-directional FIFO-based physical data ports for low latency audio
- Support for Bulk Register Access (BRA) and Bulk Payload Transport (BPT)
- Flexible frame structure

Benefits

- Full-featured and highly configurable IP core that is area-optimized for each application
- Complete solution—complementary master/slave
- Verified in FPGA, silicon-proven

Figure 1: Example System-Level Block Diagram
Product Details

The Controller IP is designed to provide low-cost, low-power connectivity for audio data transport and control. SoundWire interface is utilized to provide two types of connectivity. The first carries PCM audio data between a mobile application processor and a standalone audio codec or Bluetooth/FM radio controller. The second type carries PDM audio between the audio codec and MEMS microphone or speaker amplifiers.

Register and Command/Response FIFO Access

The control registers can be accessed from a 32-bit AHB-Lite client interface. All registers are mapped to host memory space. Certain timing critical registers are banked to allow synchronous switching without interruption to data streams. The master controller also deploys two 32-bit command FIFOs for command issuance (TX) and status tracking (RX). They are accessible through the AHB interface or direct command/response to be attached to an external DMA engine.

Control Port

The control port supports READ/WRITE/PING commands generation. It also generates synchronization patterns that allow slave controllers to synchronize to the bus. Control port also controls bus release mechanism as well as it monitors status of all devices that are attached to the bus and raises an interrupt in case of status change.

Data Port

The master controller supports configurable numbers (1 to 32) of physical data interface (PDI); each PDI can be configured as TX, RX or bidirectional. The PDI FIFO has configurable width from 1 to 32 bits, and depth of 4 to 32 entries, synchronous or asynchronous.

Related Products

- Cadence Slave Controller IP for MIPI SoundWire 1.1
- Cadence Tensilica HiFi DSP for Audio
- Cadence Manager Controller IP for MIPI SLIMbus®
- Cadence Device Controller IP for MIPI SLIMbus
- Design IP for I2S Single Chanel (I2S-SC) and Multi Channel (I2S-MC) Bus Controller
- Cadence Controller IP for Sony/Philips Digital Interface Format (S/PDIF)

Deliverables

- Documentation—implementation specification, user guide, release history
- Clean, readable, synthesizable Verilog RTL
- Synthesis scripts
- Sample verification testbench with integrated BFM, monitors, and sanity tests

For more information, visit ip.cadence.com

Cadence Design Systems enables global electronic design innovation and plays an essential role in the creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design and verify today’s mobile, automotive, cloud, and connectivity applications. www.cadence.com

© 2016 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and Tensilica are registered trademarks of Cadence Design Systems, Inc. in the United States and other countries. MIPI and MIPI SLIMbus are registered trademarks owned by the MIPI Alliance. MIPI SoundWire is a service mark of the MIPI Alliance. Bluetooth is a registered trademark owned by Bluetooth SIG, Inc. All other trademarks are the property of their respective owners.

THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY, MAY BE CHANGED WITHOUT NOTICE, AND DOES NOT REPRESENT A COMMITMENT ON THE PART OF CADENCE.