Overview

Formal analysis is a mathematical approach to verification that has the unique ability to prove that a design is 100% correct. This method is tremendously useful, but is limited in the size and types of designs that can be verified. Still, for IP blocks with bus-style interfaces, it is an ideal verification solution.

Cadence® Assertion-Based VIP simplifies formal verification through its plug-and-play approach. Just attach the VIP to your design and run – no need for complicated tests and coverage analysis.

No Tests Required

With Cadence Assertion-Based VIP, no test creation is required. Unlike logic simulation that uses test sequences to stimulate a design, a pre-programmed set of “constraints” is supplied with the assertion-based VIP. These constraints describe the range of all possible stimulus for a given interface specification. Also, “assertions” in the VIP check the interface signaling to make sure your design is acting in accordance with the protocol specification. You can start verifying your design in minutes with our assertion-based VIP.

Debug Made Easy

Cadence Assertion-Based VIP works with the Cadence Incisive® Formal Verifier tool to make debug easy. When the VIP detects a design error, Incisive Formal Verifier displays a waveform trace, schematic view, and source code analysis of the bug. This makes it easy to find the root causes of bugs – and fix them!

Specification Support

The AXI3 Assertion-Based VIP supports the AMBA AXI protocol v1.0 and v2.0 and AXI as defined in the AMBA AXI protocol specification.

The APB Assertion-Based VIP is included and supports the AMBA 2, AMBA 3, and AMBA 4 APB interface protocol specifications.

Product Highlights

- Supports all legal data and address widths
- Supports sending of data before address transactions
- Supports interleaving of read/write data, wherever applicable
- Supports monitoring and driving of all exclusive transactions
- Supports monitoring and driving of locked transactions
- Supports low-power interface

Supported Design-Under-Test Configurations

- Master
- Slave
- Hub/Switch
- Full Stack
- Controller-only
- PHY-only

www.cadence.com