Overview

Certified for compliance with Universal Serial Bus Specification, Revision 2.0, the Cadence® Design IP for USB 2.0 Controller operates in High-Speed (480Mbps) and Full-Speed (12Mbps) modes. The PHY interface complies with USB 2.0 Transceiver Macrocell Interface (UTMI) Specification, version 1.05 and UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1.

The Controller IP is architected to quickly and easily integrate into any system on chip (SoC), and to connect seamlessly to a Cadence, or third-party, UTMI- or ULPI-compliant PHY. Both configuration and data interfaces of the controller are compatible with industry-standard ARM® AMBA® AXI and AHB specifications.

The Controller IP is delivered with a low-level driver to ease integration into the target application. Both the driver and the Controller IP support all available USB 2.0 classes.

The Controller IP is silicon-proven, and has been extensively validated with multiple hardware platforms.

The Controller IP is part of the comprehensive Cadence Design IP portfolio comprised of Interface, Memory, Analog, and Systems and Peripherals IP.

Benefits

- Complete hardware and software solution—less time spent on application development
- High level of configurability—better fit for application needs
- Industry-standard interfaces—simple system integration

Key Features

- Supports High-Speed (480Mbps) and Full-Speed (12Mbps) data transfer rates
- AXI or AHB configuration interface
- Scatter-gather DMA with AMBA AXI or AHB interface
- Supports Link Power Management (L0 through L3)
- Up to 15 IN and 15 OUT configurable endpoints
- Supports Attach Detection Protocol
- Certified for compliance with USB 2.0 specification
- Support for Remote Wake-Up
Product Details

The Controller IP handles data transfer autonomously, and bridges the USB interface to a simple read/write parallel interface. Controller operation can be customized for specific applications.

Device Controller

The Device Controller implements the USB 2.0 protocol for peripheral devices. Data transactions, suspend and resume behavior, and interrupt generation are all handled by the Device Controller. Special Function Registers are provided for programming the behavior of the Cadence USB 2.0 Device Controller IP.

DMA Engine

The DMA Engine transfers data between endpoint buffers and external memory. The host initializes a DMA transfer by writing to the DMA Special Function Registers. The DMA Engine can be configured for little-Endian or big-Endian transfers. An optional Advanced DMA Engine that supports scatter-gather operation is also available.

Endpoint Logic

The Endpoint Logic generates control signals for two synchronous, dual-port RAM components, one port for OUT endpoints and one port for IN endpoints. RAM size is fully configurable for the number, size, and buffering requirements of endpoints.

Availability

The Controller IP is available with support for the following protocol:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2.0</td>
<td>480Mbps</td>
</tr>
</tbody>
</table>

Deliverables

- Synthesizable RTL
- Testbench
- Synthesis and simulation support files
- Documentation

For more information, visit ip.cadence.com

Related Products

- PHY IP for USB 2.0
- Cadence Verification IP for USB Protocols