Tensilica Datasheet

Tensilica Xtensa LX5 Customizable DPU
High performance with flexible I/Os and wide data fetches

Cadence provides system-on-chip (SoC) designers with the world’s first and only configurable and extensible processor cores fully supported by automatic hardware and software generation. Cadence® Tensilica® Xtensa® processors enable SoC designers to add flexibility and longevity to their designs through software programmability as well as differentiation through processor implementations tailored for the specific application. Xtensa LX5 dataplane processing units (DPUs) are configurable and extensible and ideal for handling complex compute-intensive digital signal processing (DSP) applications where a register-transfer level (RTL) implementation may be the only other option.

Features
- Highly efficient, small, low-power 32-bit base architecture
- Configurable over a wide range of pre-verified options including 10 different DSP choices
- Extend with designer-defined application-specific instructions, execution units, register files, and I/Os
- Virtually unlimited I/O bandwidth with multiple, wide, designer-defined FIFO, GPIO, and Lookup interfaces
- Selectable 5– or 7-stage pipeline depth for core instruction set architecture (ISA), plus extended DSP pipelines up to 11 stages
- Local memories configurable up to 8MB with option for memory parity or ECC
- Up to 128-bit-wide flexible-length instruction extension (FLIX) instructions
- Multi-core on-chip debug (OCD) with break-in/break-out
- Dual load/stores up to 512-bit-wide with data cache support and multi-bank RAM support
- Power domains for power shutoff
- Semantic and memory data gating
- ARM® CoreSight™-compatible interfaces for debug and trace
- IEEE 754-compliant double-precision floating-point unit
- Complete matching software development tool chain automatically generated for each core

Benefits
- Develop hardware for complex dataplane processing significantly faster compared to pure RTL methods
- High-bandwidth data flow through processor with flexible I/O interfaces that are independent of the system bus
- Quickly and easily scale hardware architecture with task-customized processors
- Lower verification effort with pre-verified, correct-by-construction RTL generation
- Post-silicon programmability
- Accurate high-speed processor and system simulation models automatically created for software development
- Simplified multi-core debugging
- Huge bandwidth, more parallelism to reduce cycle counts
- Low-leakage power design
- Dynamic power savings
- Easy integration into a CoreSight-based debug and trace infrastructure
- Single- or double-precision floating-point option to match the exact application requirements
- Mature, highly optimizing C/C++ compiler means you can work at the ‘C’ level for most applications
Processors for the Challenges of the SoC Dataplane

Inside today’s complex SoCs, you can find many different processors, from general-purpose processors to function-specific offload engines that add programmability and flexibility. Although general-purpose embedded processors can handle most control tasks well, they lack the bandwidth needed to perform complex, data-processing tasks such as network packet processing, video processing, and digital cryptography. Chip designers have long turned to hardwired logic (blocks of RTL) to implement these key functions. The problem with the RTL blocks is that they take too long to design, take even longer to verify, and are not programmable.

Cadence provides SoC designers with the world’s first and only configurable and extensible processor cores fully supported by automatic hardware and software generation. Tensilica Xtensa processors enable SoC designers to add flexibility and longevity to their designs through software programmability as well as differentiation through processor implementations tailored for the specific application. Configurable and extensible, Xtensa LX5 DPUs are ideal for handling complex compute-intensive DSP applications where an RTL implementation may be the only other option:

- **Configurable**: The Xtensa tools offer a menu of pre-verified checkbox and drop-down options ranging from memory size and width to complex DSP functions.
- **Extensible**: The Tensilica Instruction Extension (TIE) methodology, based on the Verilog language, lets designers implement datapath elements in the processor pipeline and add more I/Os. The control finite state machine (FSM) for datapath elements is implemented as software running on the processor. Just specify the functional behavior of the datapath and the RTL is automatically generated, along with the full matching software toolchain and models.

Feature Overview

Modern ISA with true multi-generational compatibility
- Xtensa ISA fundamentally architected for extensibility
- Base instruction set of 80 RISC instructions for compatibility across every Xtensa core
- Dozens of available optional blocks
- All differentiating designer-defined instructions written since 1998 can still be re-used today

Optional pre-defined execution units
- 32-bit multiplier and/or 16-bit multiplier and MAC
- IEEE 754-compliant single- and double-precision floating-point unit
- Double-precision floating-point acceleration
- 3-way 64-bit FLIX (FLIX3) with interleaved VLIW and regular instructions
- Pre-defined 32-bit GPIO and FIFO-like Queue interfaces

Optional execution units (additional licensing)
- ConnX D2 DSP engine
- ConnX Vectra LX DSP engine
- ConnX Vectra VMB for baseband acceleration
- ConnX BBE16, BBE32, and BBE64 baseband engines
- HiFi-3, HiFi EP, HiFi-2, and HiFi Mini audio/voice DSPs
- IVP32 32-way SIMD imaging/video DSP

Differentiate with designer-defined instructions
- Make your specific algorithm run even more efficiently by adding the instructions it needs
- Development tools automatically adapt for full support

Natural connectivity with RTL blocks
- Multiple custom-width I/O Ports for peripheral control and monitoring
- Multiple custom-width Queue interfaces to FIFOs for data streaming into and out of the processor
- Co-simulation with RTL down to the pin level in SystemC

Highly configurable interfaces
- Optional processor interface (PIF) to system bus, choice of 32-, 64-, or 128-bit width with in-bound slave DMA option
- Optional ARM AMBA® AXI and AHB-Lite interfaces with synchronous or asynchronous clocking
- Write buffer: selectable from 1 to 32 entries
- Up to 128-bit-wide instructions and up to two 512-bit-wide load/stores and hardware prefetch unit
- Optional second data load/store unit with data cache support
- Choice of 1-, 2-, or 4-way cache and local memories
- Up to 32 interrupts

Multi-core design style support
- Multi-core system creation, modeling, and SystemC co-simulation out-of-the-box, fully supported within the Xtensa Xplorer™ integrated development environment (IDE)
- Homogenous and heterogeneous subsystems supported
- Inter-core OCD with break-in/-out control
- Optional 16-bit processor ID, supporting massively parallel array architectures
- Conditional store instruction option and synchronization library provide shared memory semaphore operations and the “release consistency model” of memory access ordering
Complete hardware implementation and verification flow support
- Automatic generation of RTL and tailored EDA scripts for leading-edge process technologies, including physical synthesis and 3D extraction tools
- Auto-insertion of fine-grained clock gating for low power
- Hardware emulation support including automated FPGA netlist generation for rapid SoC prototyping
- Comprehensive diagnostic test bench to verify connectivity
- Formal verification support for designer-defined instructions

High-speed, high-accuracy system simulation models automatically created
- High-speed instruction-accurate simulator for software development
- Pipeline-modeling, cycle-accurate Xtensa instruction set simulator (ISS)
- Xtensa SystemC (XTSC) transaction-level modeling (TLM) support, including out-of-the-box multi-core simulation
- Hardware co-simulation with RTL in SystemC with pin-level XTSC

Integrated design environment
- Create, simulate, debug, and profile whole designs in one tool—Xtensa Explorer is a high-productivity IDE
- Tenth-generation software development tools target each processor. The advanced Xtensa C/C++ compiler (XCC) includes optimizations for base, optional, and designer-defined instructions
- Vectorization Assistant directs the programmer to areas of the application that can benefit most from modifications to enable better vectorization
- Multi-core subsystem design and simulation support
- Custom data display formatting for easy debug of vector and fixed-point data types as well as bit-mapped status and control

Multi-core debug and ease of use
- Interfaces to support CoreSight infrastructure
- Multi-core OCD support
- Multi-core debug improvement including sharing single trace memory across multiple TRAX modules,
- hardware/software support for synchronous restart/resume, cross triggering, etc.

Dynamic and leakage power improvements
- Power shut-off feature allows Xtensa DPUs to be completely powered off. To help achieve low leakage, Xtensa DPUs can now be divided into multiple “power domains.” Each power domain operates at the same voltage and can be shut down and powered up individually
- Dynamic power saving features including semantic and data power gating

Robust real-time operating system support
- Use Mentor Graphics Nucleus+, Express Logic’s ThreadX, Micrium’s uC/OS-II, or the embedded Linux operating systems

Efficient Base Architecture
The Xtensa LX5 32-bit architecture features a compact instruction set optimized for embedded designs. The base architecture has a 32-bit ALU, up to 64 general-purpose physical registers, six special-purpose registers, and 80 base instructions, including 16- and 24-bit (rather than 32-bit) RISC instruction encoding. Key features include:
- A wide range of configurable options to ensure you get just the logic you need to meet your functional and performance requirements
- Modelessly intermix standard 16- and 24- as well as custom 32-, 64-, 96-, or 128-bit FLIX (VLIW) instructions for lowest code and performance overhead
- Selectable 5- or 7-stage core ISA pipeline to accommodate different memory speeds, plus extended DSP execution pipelines up to 11 stages, and custom-instruction pipeline depths up to 23 stages
- Virtually unlimited I/O bandwidth with optional Queue (FIFO), Port (GPIO), and Lookup interfaces for data transfers that are not dependent on the limited system bus bandwidth
- One or two 32-/64-/128-/256-/512-bit-wide load/store units
- Local memories configurable up to 8MB with optional parity or ECC
- Optional hardware prefetch reduces memory latencies
- Automated fine-grained clock gating throughout processor for ultra-low power solutions
- Optional multi-issue VLIW architecture for parallel instruction execution with FLIX

Base instruction set compatibility
Configurability of a Tensilica processor core builds on the underlying base Xtensa ISA, thereby ensuring availability of a robust ecosystem of third-party application software and development tools. All configurable, extensible Xtensa processors are compatible with major operating systems, debug probes, and IDE solutions. For each processor, the automatically generated complete software development toolchain includes an advanced IDE based on the ECLIPSE framework, a world-class C/C++ compiler, a cycle-accurate SystemC-compatible instruction set simulator, and the full industry-standard GNU toolchain.

Xtensa uses an ISA that has been backwards compatible since its introduction in 1998. It uses a base instruction set of 80 instructions and was fundamentally architected for extensibility. Designers can run application code written in 1998 on the Xtensa LX5 processor today. Any differentiating designer-defined instructions from earlier designs can be re-used today.

Powerful base ISA
The Xtensa ISA includes powerful compare-and-branch instructions and zero-overhead loops, which allow the compiler to generate tight, optimized loops. It also provides bit manipulations
including funnel shifts and field-extract operations that are critical for applications, such as networking that processes the fields in packet headers and performs rule-based checks.

Extensible ISA

One of the fundamental technology innovations in the Xtensa processor is the ability to easily and seamlessly add instructions into the processor’s datapath. Any associated C data types, the software tool chain support, and the EDA scripts required to synthesize the processor are all generated automatically, just as if they had been there from the start. The specification of this datapath and associated instructions and C data types is written in the TIE language, which is explained in more detail in a later section.

Highly Configurable Functionality

Xtensa DPUs offer pre-verified options that you can add to your designs when they are needed. Just select from click-box options to add functionality to your processor and evaluate performance improvements quickly.

Configurable ISA options include:
- Single 16-bit multiply accumulator (MAC)
- 16– or 32-bit multipliers
- IEEE 754-compliant single-/double-precision scalar floating-point coprocessor unit
- Double-precision floating-point acceleration
- A pair of 32-bit direct GPIO interfaces (GPIO32)
- A pair of 32-bit FIFO-like queue direct interfaces (QIF32)
- 3-way 64-bit VLIW (VLIW3)

Basic interface options include:
- Designer-defined Queues, Ports, and Lookups
- Processor interface (PIF), AMBA AXI and AHB-Lite protocol options with synchronous or asynchronous clocking
- 32-/64-/128-bit width
- Optional “no PIF” configuration
- Inbound DMA
- XLMI high-speed local interface
- Big-Endian/Little-Endian byte ordering
- Choice of one or two general-purpose load/store units, each 32-,64-, 128-, 256-, or 512-bits wide
- OCD port (IEEE 1149.1 or CoreSight-compatible debug APB interface)
- Trace port signals
Tensilica Xtensa LX5 Customizable DPU

- Up to 32 interrupts with up to seven levels of priority plus a separate non-maskable interrupt level
- Write buffer: selectable from 1 to 32 entries
- Multiple custom-width GPIO Ports for direct control and monitoring of peripherals
- Multiple custom-width Queue interfaces for streaming data into and out of the processor via FIFOs
- 16-bit processor ID
- Supports 32-, 64-, 96-, or 128-bit-wide FLIX instructions

Memory subsystem options include:
- Dual load/store with data cache support
- Multibank RAM support
- Single-cycle or dual-cycle access speeds
- Local data and instruction caches
- Up to 4-way set associative
- Up to 32KB
- Write-back and write-through cache write policy
- Memory management unit (MMU) with translation look-aside buffers (TLBs), includes no-execute bit security support

- Memory management options including
 - Region protection
 - Region protection with translation
 - MMU for the Linux operating system
- Up to six local memory banks can be connected for instruction and data accesses (up to 12 in total). Memory banks may be local ROM, RAM, or cache ways

- Hardware prefetch for reducing long memory latencies
- Optional parity or ECC for all local memories

In addition to these options, there are several pre-configured major functional blocks that are licensed in addition to Xtensa LX5:
- HiFi Audio/Voice DSPs—the industry’s most popular audio subsystems with a library of over 100 audio, voice, and sound enhancement software packages
- ConnX BBE16 DSP—for use in LTE baseband processors in cellular radios and multi-standard broadcast receivers
- ConnX BBE32 DSP—a very low-power 32-MAC DSP designed for LTE-Advanced and HSPA+ handsets
- ConnX BBE64 DSP—the most powerful DSP we offer with up to 128 MACs for use in LTE-Advanced baseband processors
- ConnX D2 DSP engine—for 16-bit communications DSP functions. The ConnX D2 DSP engine delivers outstanding performance from ‘C’ code
- ConnX Vectra DSP engine—for medium performance 16-bit communications DSP functions. The ConnX Vectra DSP engine uses 64-bit instruction words containing three issue slots for ALU, multiply-accumulate, and load/store operations

Add Flexibility and Extensibility to Your SoC Designs with Xtensa DPUs

General-purpose processors offer fixed options for memory size, cache size, and bus interface. Performance is generally proportional to the clock speed. Beyond that, application code

Choose pre-verified functionality. Click-box options and side-by-side profiling allow easy “what-if” assessments

Options

- Register Files Processor State
- MAC 16 DSP
- MUL 16/32
- Integer Divider
- Single-/Double-Precision Floating Point (FP)
- Double-Precision Floating-Point Acceleration
- 32-bit GPIO (GPIO32)
- 32-bit Queue Interface (QIF32)

VLIW (FLIX) Options

- HiFi , Hifi Mini Audio Engine
- ConnX D2 DSP Engine
- ConnX Vectra LX DSP Engine (1, 2 Load Stores)
- VectraVMB (DSP Acceleration Instructions)
- FLIX3 (3-way FLIX Configuration)

www.cadence.com

Figure 3: Widest range of configurable functional units for the Xtensa LX5 DPU
optimization or a move to the next-generation processor is required to get incremental performance benefits.

Cadence offers the unique ability to add flexibility and longevity to your SoC designs through software programmability as well as differentiation through processor implementations tailored for the specific application. You can now design a processor with functions, especially its instruction set, that can be extended to include features never considered or imagined by designers of the original processor, all using the TIE language.

The TIE language can be used to describe instructions, registers, execution units, and I/Os that are then automatically added to the processor. TIE is a Verilog-like language used to describe desired instruction mnemonics, operands, encoding, and execution semantics. TIE files are inputs to the Xtensa Processor Generator. The Generator automatically builds the processor and the complete software tool chain that incorporates all configuration options and new TIE instructions. The base instruction set remains for maximum compatibility with third-party development tools and operating systems.

The TIE language unlocks the true power of the Xtensa DPU. It lets you get orders-of-magnitude performance increases for your applications and create differentiation. Extensibility with Xtensa DPUs allows features to be added or adapted in any form that optimizes the processor's cost, power, and application performance.

Flexibility—add just what you need

Just as you can choose from a set of predefined functional options to improve processor performance, you can now create instructions that can speed-up standard or proprietary algorithms. Using the tools provided, application hot spots can be identified and additional instructions created to process these hot spots more efficiently, without the need to increase the clock frequency or rewrite a lot of the software.

Differentiate—make a processor that's uniquely your own

With fixed-function general-purpose processors, differentiation is often limited to the algorithm implementation itself. General-purpose processors are good at general-purpose computing, but not so good at any specific algorithm. Xtensa DPUs give you the opportunity to differentiate by implementing algorithms more efficiently with hardware that accelerates your particular algorithm. This means that your design will be almost impossible to copy, as only your custom processor will reach the performance required on the same software implementation.

FLIX for parallel execution (VLIW)

Many of the major pre-configured functional blocks take advantage of Xtensa LX5’s FLIX capabilities.

The FLIX architecture makes the Xtensa LX5 into a VLIW processor that executes 2 to 30 parallel execution units when needed. Wide 32-/64-/96-/128-bit FLIX instruction formats are seamlessly intermixed with the base Xtensa 16-/24-bit instructions so there is no mode switch penalty when using FLIX.

With FLIX, the Xtensa LX5 processor can deliver the ultra-high performance characteristics of a specialty ultra-wide instruction word processor without the negative code-size implications typically found in such VLIW or ULIW processors. In fact, Xtensa LX5 processors with FLIX can often deliver higher performance and smaller code size at the same time. This performance comes with very little overhead—adding only 2,000 gates to the size of the processor for instruction decode and control.

The XCC automatically extracts parallelism from source code and bundles multiple operations into FLIX instructions so the benefits can be realized without additional software development. In this way, a three-issue Xtensa LX5 processor running at a lower frequency can deliver the performance that's equivalent to that of

Figure 4: Xtensa LX5 offers a proven method of adding designer-defined functional units and interfaces to the Xtensa LX5 DPU

www.cadence.com
a significantly higher clocked processor. Additionally, the compiler can bundle the branch and load/store instructions in parallel with compute instructions to gain a performance boost over straight-line code.

Designers can add additional capabilities in the major pre-configured functional blocks by using the FLIX capabilities in their own design to specify exactly what’s needed.

Flexible Length Instructions with FLIX

Example 1: 3 Operations, 64b-Instruction Format

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>Operation 2</th>
<th>Operation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 2: 5 Operations, 64b-Instruction Format

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>Op 2</th>
<th>Op 3</th>
<th>Op 4</th>
<th>Operation 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 3: 8 Operations, 128b-Instruction Format

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5: Designers can use FLIX to create VLIW instructions up to 128 bits wide to execute 2 to 30 parallel execution units

Designer-Defined I/O Bypasses the System Bus for Maximum Data Throughput

Xtensa processors bring another fundamental breakthrough in embedded processor designs—the ability to define direct data interfaces into and out of the processor for maximum data throughput. This ability is a key reason that Xtensa is ideal for the SoC dataplane. Tensilica provides three direct interface capabilities, as well as a Port and Queue Wizard:

TIE Ports

The TIE Ports provide direct (GPIO) connections to other logic within an SoC or to other Xtensa processors. They are created with simple one-line declarations in a TIE file.

TIE Queues

The TIE Queues function like FIFO interfaces. TIE input Queues function with a familiar pop/empty/data interface to external logic while TIE output Queues present a similar push/pull/data interface. All interactions with the Xtensa processor pipeline are automatically implemented by the Xtensa Processor Generator.

TIE Lookups

The TIE Lookups let you connect RAMs or external devices to Xtensa processors. These external memories or devices can be accessed directly from the processor’s datapath without using load/store instructions. These interfaces are useful for connecting table-lookup RAMs, for example in networking applications, or for connecting long-latency hardware computation units.

Port connections can be up to 1024 wires wide, allowing wide data types to be transferred easily without the need for multiple load/store operations. As many as one million signals (1,000 1024-bit-wide ports) can be used. While this number far exceeds the performance demands of real systems today, this clearly demonstrates that the conventional I/O bottlenecks inherent in a system-bus-based solution do not apply to Xtensa processors.

While Ports are ideal to quickly convey control and status information, Queues provide a high-speed/low-latency mechanism to transfer streaming data with buffering. Input queues and output queues operate, to the programmer’s viewpoint, like traditional processor registers—without the bandwidth limitations of local and system memory accesses.

TIE Port and Queue Wizard

The Xplorer IDE provides a wizard for quickly generating Ports and Queues without the need to write any TIE.

Xtensa LX5 as an RTL Companion

RTL verification has become the most resource- and time-consuming aspect of SoC design. The Xtensa processors offer unique advantages to SoC designers where they can use a pre-verified intellectual property (IP) core as a foundation and add custom extensions through correct-by-construction design techniques. This design approach significantly reduces the need for the long verification times required when designing custom RTL. Xtensa can connect directly to your RTL with dedicated high bandwidth data and control interfaces.

Bandwidth of hard-wired logic and performance without hand-coded state machines

The Xtensa processor can achieve virtually the same levels of inter-block I/O bandwidth and intra-block computational parallelism as hard-wired logic designed with traditional RTL design methodologies. How? By using a combination of TIE Ports and Queues, parallel FLIX execution units, and some TIE instructions.

Unlike RTL-based designs, Xtensa processors are pre-verified, and do not require hard-wired implementation of complex state machines. Instead of state machines, the datapaths are sequenced and controlled by the processor’s instruction stream. That means...
the “control logic” is fully programmable and can be debugged using software development methodologies—reducing verification time and risk for the entire SoC.

Lower verification effort and time

Designing hardwired RTL blocks has become more about verification than about design. Design teams typically spend twice the number of resources and person months on verification than on design. Design changes made late in the project cycle are often limited by the verification effort.

Typically, 90% of the RTL block’s area lies in the datapath and only 10% in the control logic, yet most (perhaps 90%) of the bugs are found in the control logic. The ability to extend the Xtensa processor using TIE enables designers to create datapaths inside the processor without the need to generate and verify the associated control logic. Instead the control logic is expressed in software as instructions that execute on the processor.

It is easier to verify TIE extensions made to the Xtensa processor than it is to verify an equivalent RTL datapath, since only the input-output relationship and functional behavior of the operations specified in TIE have to be verified. The TIE Compiler and Xtensa Processor Generator take care of converting the TIE specification into data path elements in the processor pipeline and implementing the control, decode, and bypass logic in the processor control units.

Reuse of the same hardware for multiple tasks

Complex SoCs consist of millions of gates of logic and are designed to perform multiple tasks. Often these multiple tasks do not need to be performed at the same time. This provides an opportunity for multiple tasks to share the same hardware units. Processors are particularly amenable to enabling this type of sharing.

Designers can specify a datapath in TIE that consists of a set of execution units that can be used by multiple tasks and then use the programmability of the processor to determine which tasks are executed. For example, an audio engine can be designed to implement a range of audio codecs, such as MP3, AC-3, WMA, etc.

Flexibility to fix and upgrade algorithms post silicon

An Xtensa processor implementation of an algorithm lets the designer fix, enhance, and tweak the algorithm even after the SoC has taped out. In particular, post-silicon bugs now have a chance of being worked around. Algorithms that are a subject to continuous research, such as half-toning in printers and image and video post processing, are ideal candidates for implementation in an Xtensa processor.

Using Xtensa DPUs, you can easily add functionality to an existing design, or upgrade parts of it to support the latest standard, with limited development effort.

Co-simulation at the RTL pin level

Connect directly to your RTL wires using pin-level XTSC SystemC model interfaces without the need to purchase additional EDA vendor tools. This enhancement to transaction-level XTSC models allows designers to interchange SystemC and RTL blocks for co-simulation. This works with all of the major EDA vendor simulation tools.

Extending the Life of an Existing RTL Design

Using Xtensa, you can easily add functionality to an existing design, or upgrade parts of it to support the latest standard, with modest development effort.
These provide almost unlimited bandwidth with precise latencies.

Figure 10: When extending the functionality of existing RTL blocks, the control logic can be brought into the processor to make the FSM easier to debug and verify.

Figure 11: When larger changes to the datapath are needed, then the whole RTL function can be brought into the processor.

Rapid Design Development, Simulation, Debug, and Profiling

The Xtensa Xplorer IDE serves as the graphical user interface (GUI) for the entire design experience. From Xtensa Xplorer, designers with existing application software can profile their application, identify hot spots, decide on configuration options, add instructions and execution units to optimize performance, and then generate a new processor—all within a matter of hours. No other IP provider puts such flexibility directly into the hands of the designer with a tool that integrates software development, processor optimization, and multi-processor SoC architecture in one IDE.

Figure 12: This proven methodology automates the creation of customized processors and matching software tools
Hardware designers now have creative options for implementing algorithms. Interfaces can be added to the processor to offer direct, deterministic connectivity to SoC logic. With the customizable Port and Queue interfaces, designers can stream data into or out of the processor. This direct connectivity with the rest of the SoC offers great control and predictable bandwidth. The simple ‘C’ programs needed to control the Xtensa processor can be written and debugged within the Xtensa Xplorer IDE.

The Xtensa Processor Generator creates a complete hardware design with matching software tools, including a mature, world-class compiler, a cycle-accurate SystemC-compatible instruction set simulator (ISS) and the full industry-standard GNU Toolchain.

Hardware Development

Hardware designers can profile, compare and save many different processor configurations. Use the ISS to simulate a single processor or, for multiple processor subsystems, choose Cadence’s XTensa Modeling Protocol (XTMP) or XTSC modeling tools.

Xtensa Xplorer serves as the gateway to the Xtensa Processor Generator. Once a processor configuration is finalized, the Xtensa Processor Generator creates the automatically verified Xtensa processor to match all of the configuration options and extensions you have defined, in about an hour. The full software tool chain is also created that matches all processor modifications made. See the Processor Developer’s Toolkit product brief for more information.

Complete hardware implementation and verification flow support

- Automatic generation of RTL and tailored EDA scripts for leading-edge process technologies, including physical synthesis and 3D extraction tools
- Auto-insertion of fine-grained clock gating delivers ultra-low power
- Hardware emulation support including automated FPGA netlist generation
- Comprehensive diagnostic test bench
- Format verification support for designer-defined functions
- Pipeline-modeling, cycle-by-cycle accurate Xtensa ISS
- System modeling capabilities with optional XTMP and XTSC simulation environments
- Multiple-processor OCD capable with break-in/out control
- Hardware co-simulation in System C with Tensilica’s pin-level XTSC connectivity to RTL
- XTSC transaction-level modeling support, including out-of-the-box multi-core co-simulation

Software Development

The Xtensa Software Developer's Toolkit (SDK) provides a comprehensive collection of code generation and analysis tools.

![Figure 13: Xtensa Xplorer can display valuable information including performance comparisons, instruction sizes, and processor size, area, and power](image)
that speed the software application development process. The Eclipse-based Xtensa Xplorer GUI serves as the cockpit for the entire development experience and also provides powerful visualization tools to aid application optimization.

The entire Xtensa software development tool chain, along with simulation models, RTOS ports, optimized C-libraries, etc., are automatically generated by the Xtensa Processor Generator. This also ensures that all the software tools—such as the compiler, linker, assembler, debugger, and instruction-set simulator—always match and are tuned exactly to any custom processor hardware.

Complete software development tools

- Mature, highly optimizing C/C++ compiler (XCC) that rivals hand-coded assembly applications on other processors
- GNU-based assembler and linker
- Pipeline-modeled, cycle-accurate ISS
- High-speed (40-80X) instruction-accurate TurboXim™ simulator speeds software development
- XTMP and XTSC for multi-processor simulation and modeling
- Debug offers full GUI and command-line support for single- and multi-processor designs
- Profiling views of the processor pipeline utilization as well as time spent in functions across multiple processors, allows “what if” comparisons
- Vectorization Assistant discovers and locates code that could not be vectorized along with an explanation that can help the programmer modify the code so that it can be vectorized
- Support for major operating systems including Mentor Graphics’ Nucleus Plus, Express Logic’s ThreadX, Micrium’s µC/OS-II, and open-source Linux

Ideal for applications where low power is critical

Power often is the key issue in an SoC design. Many techniques are employed to reduce power consumption, both built into the base hardware and into the configuration options, allowing more control over system and memory resources. Xtensa processors consistently consume less power than other licensable embedded CPUs at equivalent gate counts.

Insertion of fine-grained clock gating for every functional element is automated, including those defined by the designer. This automation gives the Xtensa DPUs a significant advantage over RTL design where manual, error-prone post-layout tuning of clock circuits is often required.

Accessing local memories is one of the highest power-consuming activities. Xtensa LX5 processors eliminate any unnecessary local memory interface activation if the processor does not directly address that memory. With Xtensa LX5, you can now do semantic and memory data gating to save dynamic power.

As process geometries shrink, leakage power consumes a larger portion of the total power budget. To substantially reduce leakage power, Xtensa LX5 gives you options during processor configuration, which will:

- Instantiate a power control module (PCM) in the Xtmem level of design hierarchy
- Specify the number of power domains within the design and their operation via industry-standard power format files

Implementation of these energy-saving techniques is automated by the Xtensa Processor Generator.

The designer can configure the external data bus width and internal local memory data widths independently. This allows system-level power optimizations depending on whether the processor is constrained by external or internal instruction and data access.

Figure 14: Xtensa Xplorer shows debug/trace, profiling of pipeline utilization, and a cycle comparison for a multi-core simulation
Multi-processor features and debug options

Placing multiple processors on the same IC die introduces significant complexity in SoC software debugging.

All versions of the Xtensa processor have certain optional PIF operations that enhance support for multi-processor systems. Xtensa’s debug features include:

- Interfaces to support Coresight infrastructure
- Multi-core OCD support
- Multi-core debug improvement including sharing single-trace memory across multiple TRAX modules, hardware/software support for synchronous restart/resume, cross-triggering, etc.

Access to these debug functions

- Via JTAG
- Via APB
- From the Xtensa core itself

Some SoC designs use multiple Xtensa processors that execute from the same instruction space. The processor ID option helps software distinguish one processor from another via a PRID special register.

The break-in/break-out option for the Xtensa Debug Module simplifies multi-core debugging. This capability enables one Xtensa processor to selectively communicate a Break to other Xtensa processors in a multi-processor system.

In addition to multi-processor debug, it is also possible to non-intrusively trace multiple processors if they are configured with the trace extraction and analysis tool, TRAX. TRAX, which is detailed in the Debug Guide, is a collection of hardware and software components that provides visibility into the activity of running processors using compressed execution traces. The ability to capture real-time activity in a deployed device or prototype is particularly valuable for multi-processor systems where there are a large number of interactions between hardware and software.

When multiple processors are used in a system, some sort of communication and synchronization between processors is required. The Xtensa Multi-processor Synchronization configuration option provides ISA support for shared-memory communication protocols.

The Performance Monitor module is used to count performance-related events, such as cache misses. Accessing the counts through JTAG or APB is non-intrusive, but it is also possible to configure an interrupt to software running on an Xtensa DPU.

Specifications

Because it is highly customizable, Xtensa DPUs can run very efficiently at low MHz and very fast at clock frequencies over 1GHz. Maximum achievable clock speeds vary with the choice of process technology, cell library, feature set, and EDA optimization techniques.

The latest EDA tools, process flows, and other input are tracked to provide detailed performance information. For the latest data, please contact your local Cadence representative. See our website for contact details.