
Tensilica Datasheet

Tensilica Software Development Toolkit (SDK)
Quickly develop application code

Features
• Cadence® Tensilica® Xtensa® Xplorer™ Integrated

Development Environment (IDE) with full graphical user
interface (GUI)

• Mature, optimizing Xtensa C/C++ Compiler (XCC)

• Operator overloading support in C for custom data types

• Pipeline-modeling, cycle-accurate instruction set simulator
(ISS) with fast TurboXim

• GNU profiler, linker, debugger, assembler, and utilities

• Multi-processor subsystem simulation, debug, profiling,
and memory partitioning

• Vectorization Assistant for locating code loops that need
restructuring to enable vectorization

• Project management tools

• Performance and energy analysis tools

• Use Mentor Graphics NucleusPLUS, Express Logic’s
ThreadX, Micrium’s uC/OS-II, T-Engines’ µT-Kernel, or the
Linux operating systems

Benefits
• Easy-to-use Xtensa Xplorer IDE based on familiar Eclipse

platform

• Small, high-performance code from ‘C’ source
– Compiler offers state-of-the-art inter-procedural and

alias analysis
– Automatic vectorization of operations for Xtensa SIMD

processors
– Automatic Flexible Length Instruction eXtension (FLIX)

instruction bundling for multi-issue Xtensa very long
instruction word (VLIW) cores

• Detailed pipeline analysis guides optimizations from cycle/
pipeline-accurate ISS

• Fast TurboXim simulation for up to 50 million instructions
per second

• Vectorization Assistant guides code optimizations for
better SIMD performance

• Easily and quickly evaluate multi-processor subsystems

• Familiar GNU-based toolchain

Software Development Tools for Cadence
Tensilica DPUs

If you’ve looked at Tensilica’s website or processor product
briefs, you know that you can extend Tensilica’s Xtensa
dataplane processors (DPUs)—adding instruction sets,
execution units, and processor I/O interfaces—to match your
specific application needs.

By customizing the DPU for a particular application, you
can often get significantly lower energy consumption and
10-100X performance increases. This level of performance
and efficiency is often essential in the SoC dataplane. By
customizing the DPU, you create a core that’s uniquely yours,
giving you extra protection in today’s highly competitive
marketplace.

The Xtensa Processor Developer’s Toolkit is the integrated
design environment that delivers powerful tools to your
desktop to guide you through the processor customization
process. You’ll find that Tensilica has created the most
advanced, powerful, and easy-to-use tools for processor
customization.

Figure 1: Tensilica’s Eclipse-based Xtensa Xplorer IDE serves as the
cockpit for custom processor development.

Souce
C/C++, OS,

Libraries

Profile
ISS

Compile
XCC

Simulate/Debug
ISS, XTMP,

XTSC

2

Tensilica Software Development Toolkit (SDK)

www.cadence.com

The Processor Developer’s Toolkit is required
for any design team that is using Tensilica’s
TIE instructions to modify the processor. If
you are using an Xtensa processor with no
modification or only changes to configuration
options, you do not need the Processor
Developer’s Toolkit—you’ll only need the
Software Developer’s Toolkit.

Designers get a compiler, linker, assembler,
and debugger for their particular processor
hardware. As the base instruction set
architecture (ISA) is always present, third-party
tools can still be used even when the core is
customized for a particular application.

A Comprehensive System

Now in their 11th generation, Tensilica’s tools
for software development are highly refined
and provide developers with a complete,
comprehensive solution for both system design
and software development, as illustrated in
Figure 3.

EDA
Scripts

RTL

Application
Source C/C++

Compile

Executable

Profile Using
ISS

XTMP
C-Based
System

Modeling
C Software Libraries

Operating Systems

Designer-Defined
Instructions (optional)

Xtensa Processor Generator

Synthesis

Verification

Chip Integration/
Co-Verification

To Fab/FPGA System Development Software Development

Processor Generator Outputs

Hardware Software Tools

Set/Choose
Configuration Options

Xtensa C/C++ (XCC)
Compiler

GNU Software Toolkit
(Assembler, Linker,
Debugger, Profiler)

Xplorer IDE
GUI

to All Tools

System Modeling/Design

ISS

Fast Function
Simulator (TurboXim)

XTSC
SystemC
System

Modeling

Pin-Level
Cosimulation

Block Place and Route

Choose Different
Configuration or

Develop New
Instructions

Figure 2. Tensilica’s proven methodology automates the creation
of customized processors and matching software tools.

Figure 3. The editor includes many useful functions to speed up code generation and debugging

3

Tensilica Software Development Toolkit (SDK)

www.cadence.com

Project manager

When you start a new software project or modify an ongoing
project, the project manager organizes all related project source
files and allows you to create new classes, files, or folders. New
projects can be managed using the built-in project-management
and version-control mechanisms, which eliminate the need to
manually maintain makefiles and provide a clean environment for
new project builds. The project manager allows you to set all tool
options and flags (build properties) for each build target within
each individual project. Optionally, you can create unmanaged
projects that allow total user control over build target properties.

Multi-processor subsystems

The Xtensa Xplorer IDE provides multi-processor projects that
allow the designer to create a subsystem of heterogeneous cores
with shared memory. The memory partitioning for each core and
the shared memory area are specified in the GUI to make that task
simple.

Simulation of the resultant system is launched from within the IDE
and allows the software developer to debug, profile, and partition
their code very quickly.

Source code editor

The C-code editor allows you to efficiently create and modify
your code using rich editing capabilities. Recognition of language
features such as keywords, comments, declarations, and strings
are eased through syntax highlighting. Symbol indexing allows
fast program navigation including find declaration, find definition,
and find type. Other features in the editor that speed up coding
include code completion, auto indenting, and quick diff. Block
comment/uncomment is useful when debugging or profiling large
source files, as is text folding for hiding areas of text that you don’t
need to view. Other standard views, such as source outline, make
target, and problems are also available.

Xtensa compiler toolchain

Tensilica’s Xtensa C/C++ compiler is based on the GNU
compiler front-end with a highly customized code generation
back-end (derived from the Open64 project) targeting the
compact 16/24-bit Xtensa ISA. The Xtensa C/C++ compiler also
includes support for the TIE language, including intermediate
representation and optimization. The Xtensa C/C++ compiler
additionally supports Tensilica’s FLIX, allowing from 4-byte to
16-byte VLIW instruction bundles of up to 30 simultaneous
instructions limited only by opcode availability.

The Xtensa C/C++ compiler employs sophisticated multi-level
optimizations such as function inlining, software pipelining, static
single assignment (SSA) optimizations, and other code generation
techniques to reduce code size. All of these optimizations increase
code execution speed and reduce code size. Based on industry-
standard benchmarks, the Xtensa C/C++ compiler generates the
highest code density when compared to compilers for other 32-bit
RISC architectures.

The Xtensa C/C++ compiler provides the advanced optimization
techniques known as feedback-directed optimization and
interprocedural analysis.

Feedback-directed optimization is a two-step process where code
is instrumented on the first pass of compilation and run using a
representative input data set to produce a file containing profiling
information. On the second pass, this profiling information is
used to optimize application code to further reduce branch
delays, improve inlining, and minimize the impact of register
spills. The Xtensa C/C++ compiler will optimize an application’s
critical areas for performance while optimizing the remainder of
the code for space. The Xtensa C/C++ compiler is also capable
of hardware feedback-directed optimization, in which the user’s
target hardware platform can run the instrumented code to
similarly provide application-specific optimization. Hardware
feedback-directed optimization is a much faster method and the
optimization is performed on the actual target system as opposed
to simulated in the ISS.

Figure 4. Operator overloading makes porting existing code easier

Original Ported

Only the text in the
red box needs to be
changed to convert the
source to fixed point

4

Tensilica Software Development Toolkit (SDK)

www.cadence.com

Interprocedural analysis is an optimization method that looks
globally across all associated files of an application at link
time. Global optimization is a much more powerful method
than optimizing locally within an expression or procedure.
Interprocedural analysis examines relationships across function
calls, and can perform optimizations that cannot be achieved
with a local scope. Interprocedural analysis eliminates unneeded
computations, improves function inlining, and performs alias
analyses that may not be performed by less sophisticated
optimization techniques.

The Xtensa C/C++ compiler supports operator overloading on
custom data types in the ‘C’ programming language (without the
overhead that is often associated with it).

Tensilica is well known for its ability to let designers add custom
instructions and data types to improve performance. If an
application needs to work on 56-bit data, a designer can define a
custom 56-bit data type with a single line of code. The designer
can also specify what regular ‘C’ operators, such as ‘+’ and ‘*’,
should do when using this data type. The overloading is always
done with zero overhead so the resulting binaries are always
efficient.

Porting and creating ‘C’ application code that uses custom data
types is easier because standard ‘C’ operator syntax can be used.
This makes the code easier to read and simpler to port via changes
in the ‘C’ header files rather than throughout the source code
itself. See Figure 4.

The rest of the software development toolchain is based on
standard GNU tools. The compiler front-end remains similar to the

preprocessor in the GNU tools, and the flags for the preprocessor
remain the same. The assembler and linker also utilize the same
flags as the GNU versions of the tools.

Xtensa debugger

The debugger allows you to target either the pipeline-/cycle-
accurate ISS or TurboXim when no hardware is available, or
external probes to connect with hardware development boards.
As shown in Figure 5, the GUI-based debugger allows full system
visibility into your project; it controls program execution and
provides views to variables, breakpoints, memory, registers, etc.
Source and assembly code can be made visible simultaneously
while debugging an application, and either code window can be
single stepped. The debugger interoperates seamlessly with the
other development tools (compiler toolchain, ISS) to allow rapid
code development for Xtensa processor systems.

Cores in multi-processor subsystems can be debugged and
stepped synchronously or asynchronously with the other cores.

With user-defined data formatting, any data value can be
re-formatted to display a more user-friendly representation. This is
particularly effective when dealing with non-native ‘C’ types such
as fixed point or vector data or when certain bits represent status.
This data can be displayed in the Xtensa Xplorer IDE however you
want using familiar print formatting. Datatypes that are defined by
Tensilica in its DSP engines have default formatting that will show
the user-friendly representations automatically. See Figure 6 for an
example.

Figure 5. The Xtensa debugger allows full visibility into the system

Figure 6. Data can be reformatted the way you want it

5

Tensilica Software Development Toolkit (SDK)

www.cadence.com

Profiling tools

Code profiling is an extremely important tool for optimizing the
performance of your application code. The Xtensa Xplorer IDE
enables you to view profiling results generated by Tensilica’s
pipeline-accurate ISS (see Figure 7). Additionally, for much
faster and more accurate profiling, you can generate profiling

data from hardware instantiated in an FPGA or ASIC. You can
track performance data such as instruction execution count,
subroutine calls, subroutine total cycles, cache performance,
etc. While viewing functions in the profiling view, you can also
simultaneously view the assembly code in the disassembly view
and the source code in the editor. The call graph view enables
you to view the entire application hierarchy’s caller and callee

Figure 7. The profiling window allows performance metric analysis while optimizing code “hot spots”

Figure 8. The pipeline viewer helps you understand instruction stalls and latency issues

6

Tensilica Software Development Toolkit (SDK)

www.cadence.com

functions. For those inner loop optimizations, the graphical
pipeline view (Figure 8) shows any pipeline inefficiencies and
bubbles that may be occurring.

Profiling of multi-processor subsystems shows each core side by
side for easy load assessment and re-partitioning guidance. See
Figure 9.

Vectorization Assistant

Vectorization is the process of transforming the flow of your
code (from the usual handling of one data item at a time) into a
parallel loop that operates on multiple data items at once. The
Xtensa compiler is capable of performing this transformation
automatically, but you can help it exploit implicit parallelism in your
code by eliminating certain patterns of data access that prevent
successful vectorization.

Figure 10 shows how the Vectorization Assistant finds and displays
loops in your code that could be “vectorized” by the compiler if
the source was tweaked. Locating areas in the code that have not
been vectorized, but could be, can take a long time looking at
profiles, assembler, and pipeline views—then you have the task
of doing the optimization to make it vectorize. In a few clicks, the
Vectorization Assistant gets you to the loops in your source code
that would benefit the most from vectorization.

The list of messages shown is initially sorted by the number
of processor cycles used by a given loop, such that the most
expensive loops appear first. You can focus the view on a
particular file, folder, or project; you can filter out certain classes
of messages that are not currently interesting; and you can hide
messages that you do not wish to address at the moment.

15,000

10,000

5,000

core0 core1

0

ICache Miss Cycles
DCache Miss Cycles
Uncached Instruction Fetch
Uncached Load Cycles
Interlock Cycles
Branch Delay Cycles
Total Cycles

Cycles

Figure 9. Multi-core profiling

Figure 10. Vectorization Assistant helps find areas that can be improved

7

Tensilica Software Development Toolkit (SDK)

www.cadence.com

SoC Modeling

Many SoC designs today employ multiple processors. As SoC
design becomes more complex, new methods to describe, debug,
and profile overall system performance need to be employed.
Unfortunately, most software development tools vendors do not
provide pre-silicon simulation environments for multi-processor
SoCs. Tensilica offers two modeling tools: XTensa Modeling
Protocol (XTMP) for modeling in C and XTensa SystemC (XTSC) for
modeling in SystemC.

Both tools are powerful additions to Tensilica’s software
development toolkit. They provide an Application Programming
Interface (API) to the ISS, allowing fast and accurate simulation of
SoC designs incorporating one or more processor cores. Running
up to 10,000 times faster than RTL simulators, the XTMP/XTSC
environments are potent tools for software development and
SoC design. Both tools give you the ability to rapidly explore SoC
partitioning alternatives and hardware/software performance
tradeoffs. See Figure 11.

XTMP and XTSC are used for simulating homogeneous or
heterogeneous multi-processor design subsystems as well as
complex uniprocessor architectures. Use the Xtensa Xplorer IDE’s
multi-processor project to instantiate multi-processor subsystems
(or do it manually) and optionally connect them to custom
peripherals and interconnects. You can create, debug, profile,
and verify combined SoC and software architectures early in the
design process. As the simulator operates at a higher level than
HDL simulations, simulation time is cut drastically. See Figures 12
and 13.

XTMP and XTSC are integrated into the Xtensa Xplorer IDE, which
automates the creation and development of multi-processor
subsystem simulations. For XTMP, simulations are described in
standard C code, which you can modify to allow more complex
systems and additional simulator control if required. For XTSC,
simulations are described in standard SystemC code. In addition,
you have full visibility into all aspects of the simulation through
the extensive API. Designers can use a single Xtensa Xplorer IDE
to debug all simulated cores for additional visibility. The Xtensa
Xplorer IDE manages all of these connections for you in its IDE for
simplicity and easy viewing of any core.

Modeling of local and system memory

XTMP and XTSC allow memory modeling of both local and system
memory. System memory can have programmable latencies
specified for different transaction types, allowing an accurate
system simulation for analyzing performance tradeoffs. Memory-
mapped peripherals may be included in an XTMP/XTSC system
simulation, and functions are provided to connect the processor to
peripheral devices.

Compile and
Link on Host

Run

Use XTMP/XTSC to instantiate and connect models/RTL

Xtensa ISS
Libraries

User Device
Models

Application
Code

Modeling

Figure 11. Using the ISS with XTMP or XTSC for modeling

Figure 12. XTMP provides a simulation environment using instantiations
of multi-processor-capable ISS, memory models, and connectors

Figure 13. With its pin-level modeling capabilities, XTSC allows
co-simulation with Verilog

Modeling with XTMP

XTMP

Device A
Model

Producer Core

RAM ROM

RTL

FIFO

System
Memory

Device B
Model

Consumer Core

RAM ROM

XTMP_core consumer = XTMP_coreNew(”consumer”, config);
XTMP_core producer= XTMP_coreNew(”producer”, config);

XTMP_queue fifo = XTMP_queueNew(”fifo”, width, depth);
XTMP_connectQueue(fifo, producer, “FIFO_OUT”, consumer, (”FIFO_IN”);

Modeling with XTSC

XTSC

Device A
SystemC

Producer Core

RAM ROM

RTL

FIFO

System
Memory

Device B
SystemC

Consumer Core

RAM ROM

xtsc-run
-set_queue_parm=depth=4
-create_core=Producer
-connect_core_queue=Producer,FIFO_OUT,fifo
-create_core=Consumer
-connect_queue_core=fifo,FIFO_IN,Consumer

Pin-Level XTSC

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud, and connectivity applications. www.cadence.com

© 2014 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, Tensilica, and Xtensa are registered trademarks
and Xplorer is a trademark of Cadence Design Systems, Inc. in the United States and other countries. All other trademarks are the property of
their respective owners. 08/14 2768 SA/DM/PDF

Tensilica Software Development Toolkit (SDK)

Multi-threaded environment

An XTMP or XTSC simulation runs in a multi-threaded
environment, with each processor running in its own thread. Core
threads can be run asynchronously or synchronized through events
using the attached debugger. Another option is to run all cores in
lock-step, cycle-by-cycle mode. If one core stops on a break, all
cores stop until it resumes. XTMP and XTSC have many options
for implementing, controlling, and displaying results of system
simulations deploying multiple cores, memories, and user-defined
devices.

Pin-level SystemC modeling with Verilog

Additionally, Tensilica provides a link between its pipeline-accurate,
cycle-accurate ISS and the leading Verilog simulators. Designers
can now run pin-level SystemC co-simulations of Tensilica DPUs
in their native Verilog simulators with pin-level XTSC, as seen in
Figure 13.

Relative performance for different modeling levels

The wide range of choices allows customers to trade off speed
versus model accuracy and pick the best type of model for the
task at hand. Fast functional simulation gives the equivalent of
20-50 MIPS and is accurate to the CPU clock cycle level, while a
full Verilog gate-level model may run only 10-100 cycles/sec but
provides the accuracy needed to verify detailed timing. The range
of modeling options and their estimated relative performance is
summarized in Table 1.

Simulation Speed Modeling Tool Benefits

20 to 50 MIPS1 Standalone ISS in
TurboXim mode

Fast functional
simulation for
rapid application
testing

1.5 to 40 MIPS1,2 XTMP or XTSC in
TurboXim mode

Fast functional
simulation for
rapid application
testing at the
system level

800K to 1,600K
cycles/second

Standalone ISS
in cycle-accurate
mode

Software
verification and
cycle accuracy

600K to 1,000K
cycles/second2

XTMP in cycle-
accurate mode

Multi-core
subsystem
modeling and
cycle accuracy

350K to 600K
cycles/second2

XTSC in cycle-
accurate mode

Multi-core
subsystem
modeling with
SystemC interfaces
and cycle accuracy

1K to 4K cycles/
second

 Verilog RTL
simulation

Functional
verification,
pipeline-cycle
accuracy and
high visibility and
accuracy

10 to 100 cycles/
second

Verilog gate-level
simulation

Timing
verification,
pipeline-cycle
accuracy and
high visibility and
accuracy.

1. TurboXim mode simulation speed is an estimate for relatively long-running
application programs (1 billion instructions or more)

2. Simulation speed is an estimate for a single Xtensa core in XTMP or XTSC

3. Running on a typical low-cost dual-core workstation

Table 1. Modeling Performance

Summary

The Xtensa Xplorer IDE is a complete GUI-based collection of tools
that allows the software developer to create code for systems
based on Xtensa processors. From project implementation to code
generation to analysis, the Xtensa SDK enables you to achieve
fast time-to-market while employing one of the most efficient
32-bit architectures available today. Xtensa processors lower
total system costs and help design teams construct extremely
high-performance system architectures.

