Tensilica Datasheet

cadence

Tensilica Software Development Toolkit (SDK)

Quickly develop application code

Features

e Cadence® Tensilica® Xtensa® Xplorer™ Integrated
Development Environment (IDE) with full graphical user
interface (GUI)

e Mature, optimizing Xtensa C/C++ Compiler (XCC)

e Operator overloading support in C for custom data types

e Pipeline-modeling, cycle-accurate instruction set simulator
(ISS) with fast TurboXim

e GNU profiler, linker, debugger, assembler, and utilities

e Multi-processor subsystem simulation, debug, profiling,
and memory partitioning

e \ectorization Assistant for locating code loops that need
restructuring to enable vectorization

e Project management tools

e Performance and energy analysis tools

e Use Mentor Graphics NucleusPLUS, Express Logic’s

ThreadX, Micrium’s uC/OS-II, T-Engines’ uT-Kernel, or the
Linux operating systems

Benefits

e Easy-to-use Xtensa Xplorer IDE based on familiar Eclipse
platform

e Small, high-performance code from ‘C’ source

— Compiler offers state-of-the-art inter-procedural and
alias analysis

— Automatic vectorization of operations for Xtensa SIMD
processors

— Automatic Flexible Length Instruction eXtension (FLIX)
instruction bundling for multi-issue Xtensa very long
instruction word (VLIW) cores

e Detailed pipeline analysis guides optimizations from cycle/
pipeline-accurate ISS

e Fast TurboXim simulation for up to 50 million instructions
per second

e \ectorization Assistant guides code optimizations for
better SIMD performance

e Easily and quickly evaluate multi-processor subsystems

e Familiar GNU-based toolchain

Software Development Tools for Cadence
Tensilica DPUs

If you've looked at Tensilica’s website or processor product
briefs, you know that you can extend Tensilica’s Xtensa
dataplane processors (DPUs)—adding instruction sets,
execution units, and processor /0 interfaces—to match your
specific application needs.

By customizing the DPU for a particular application, you

can often get significantly lower energy consumption and
10-100X performance increases. This level of performance
and efficiency is often essential in the SoC dataplane. By
customizing the DPU, you create a core that’s uniquely yours,
giving you extra protection in today’s highly competitive
marketplace.

Souce
C/C++, OS,

Libraries

X

XtensaXplorer

Simulate/Debug
ISS, XTMP,
XTSC

Figure 1: Tensilica’s Eclipse-based Xtensa Xplorer IDE serves as the
cockpit for custom processor development.

The Xtensa Processor Developer’s Toolkit is the integrated
design environment that delivers powerful tools to your
desktop to guide you through the processor customization
process. You'll find that Tensilica has created the most
advanced, powerful, and easy-to-use tools for processor
customization.

Tensilica Software Development Toolkit (SDK)

The Processor Developer's Toolkit is required * *
for any design team that is using Tensilica’s
TIE instructi t dify th If Designer-Defined Set/Choose

ns I’UCl 10ns 1o moaity the pI’OCQS-SOI’. Instructions (optional) Configuration Options
you are using an Xtensa processor with no '
modification or only changes to configuration

. Xtensa Processor
options, you do not need the Processor
Developer’s Toolkit—you'll only need the

, . Processor G —
Software Developer’s Toolkit. Application
Source C/C++

Designers get a compiler, linker, assembler, Hardware System Modeling/Design Software Tools
and debugger for their particular processor q :

’ : EDA Xplorer IDE Compile
hardware. As the base instruction set S RTL ISS Ul -
architecture (ISA) is always present, third-party to All Tools *
tools can still be used even when the core is Fast Function Executable

. . o Simulator (TurboXi .
customized for a particular application. imulator TurboXim) GNU Software Toolkit v
. (Assembler, Linker,
Synthesis XTSC Debugger, Profiler) Profile Using
A Comprehensive System Ll Iss
) .) - Block Place and Route Modeling XTMP. Xtensa C/C++ (XCC) *
Now in their 11th generation, Tensilica’s tools csy'::f: Compiler
for software development are highly refined Verification Modeling ¢ softuare Librar Choose Different
. . Pin-Level ortware Libraries Configuration or
and provide ldevelopfers with a complete, . Chip Integration/ ki Develop New
comprehensive solution for both system design Co-Verification Operating Systems Instructions
and software development, as illustrated in l l l
Figure 3. |
To Fab/FPGA System Development Software Development

Figure 2. Tensilica’s proven methodology automates the creation
of customized processors and matching software tools.

: [———
MR e o =5 EoR == |
Eile Edit Source Refactor Navigate Search Project Tools Run Window Help
3~ @& @ i% FBmode: Off v P:Overloading LX6 ~ C:XRC.D2PM ~ T:Debug v Build Active ~ BEF
Run v Profile v Debug ~ Tce + QW (@~ A~ ® &~ Bam ¢~~~ eva~
25 Project Explorer 52 eg~°<o W = 082 Outline 52 @ Intemal Web Browser| = O
@S dhrystone % 2 BRW o %7
@S HelloWorld * With Overloading, specifying q W campich
e 5 -/ E
%o:enomg_u«s | sinclude "example.h” © overloadQ(xd_q15d", xd_q15d") : xd_q8_31d
4 Binaries xd_q8_31d overloadQ(xd_q15d *aData, xd_q15d *aCoeff) {
) Includes short i, j, ii; - =
& bii *d.q8_31d B, offset; bm;::;:n: o;er:zqu(xd_qlsd aData, xd_q15d *aCoeff) { ~
(B example.h xd_q15d res, sum, mx, mn; xd_q8_31d pow, offset;
B floste xd_q15d aOut[DATA_LENGTH]; 150 rez, som wx, an: =
15 1t [DATA_L B
9 integerc for(i=0; i<DATA_LENGTH; i+| = (RTA)
[g) main.c for(j=0, sum=0; j<COEFF_| for(i=0; i<DATA_LENGTH; i++) {
(&) nonoverload_q15.c ii = max(min(i+j-1,DAT for(j=0, sum=0; j<COEFF_LENGTH; j++) {
(¢ overload_q15.c ii = max(min(i+j-1,DATA_LENGTH-1),0);
e res = aData[ii] * aCoe
. Leeteliy res = adata[ii] * aCoeff[j];
© overloadQ(xd_q15d", xd_q15d") :3) s asiresy sum 4= res;(: L ~
[§) overload.c aout[i] = sum; < -
[Makefile
@S XT0S_Demo

// Get min, max, sum & power values
mn=MAX_DATA, mx=MIN_DATA, pow=0; // Initialize

<G m » for(i=0; i<DATA_LENGTH; i++) {

= = == mx = max(aOut[i],res);

G System Overview &3 = mn = min(aOut[i],res);
(& D_S70T-params (RF-2014.0-rc1) (1 Sum 4o aOutfi]s .
> hifi2_std-params (RF-2014.0-rc1) e
G hifi3_bdS-params (RF-2014.0-rc1) xd_q8_31d pow, offset; ~
@ hifi_mini-params (RF-2014.0-rc1) // Do more § « »
(& hifiep_bdS-params (RF-2014.0-rc: return pow;
> sample_config-params (RF-2014) [}= T

> tie_dev2-params (RF-2014.0-rcl)
(> XRC_D2PM-params (RF-2014.0-r¢
XRC_D2PM ‘E
(> XRC_D2SA-params (RF-2014.0-rc;
(& Uninstalled Configs
> Subsystems
G5 TIE Source - =~ = = - - — < < q
i) P — » |5 Problems | 71 Tasks | & Console 83 " s Estimation| 8 Stack Usage| 8 Code Coverage| & Console| & XPG View| =8|

(&> tie_devl-params (RF-2014.0-rc1) ‘

< »

Writable Smart Insert 27:6

Figure 3. The editor includes many useful functions to speed up code generation and debugging

www.cadence.com

Project manager

When you start a new software project or modify an ongoing
project, the project manager organizes all related project source
files and allows you to create new classes, files, or folders. New
projects can be managed using the built-in project-management
and version-control mechanisms, which eliminate the need to
manually maintain makefiles and provide a clean environment for
new project builds. The project manager allows you to set all tool
options and flags (build properties) for each build target within
each individual project. Optionally, you can create unmanaged
projects that allow total user control over build target properties.

Multi-processor subsystems

The Xtensa Xplorer IDE provides multi-processor projects that
allow the designer to create a subsystem of heterogeneous cores
with shared memory. The memory partitioning for each core and
the shared memory area are specified in the GUI to make that task
simple.

Simulation of the resultant system is launched from within the IDE
and allows the software developer to debug, profile, and partition
their code very quickly.

Source code editor

The C-code editor allows you to efficiently create and modify

your code using rich editing capabilities. Recognition of language
features such as keywords, comments, declarations, and strings
are eased through syntax highlighting. Symbol indexing allows
fast program navigation including find declaration, find definition,
and find type. Other features in the editor that speed up coding
include code completion, auto indenting, and quick diff. Block
comment/uncomment is useful when debugging or profiling large
source files, as is text folding for hiding areas of text that you don’t
need to view. Other standard views, such as source outline, make
target, and problems are also available.

Original

Tensilica Software Development Toolkit (SDK)

Xtensa compiler toolchain

Tensilica’s Xtensa C/C++ compiler is based on the GNU
compiler front-end with a highly customized code generation
back-end (derived from the Open64 project) targeting the
compact 16/24-bit Xtensa ISA. The Xtensa C/C++ compiler also
includes support for the TIE language, including intermediate
representation and optimization. The Xtensa C/C++ compiler
additionally supports Tensilica’s FLIX, allowing from 4-byte to
16-byte VLIW instruction bundles of up to 30 simultaneous
instructions limited only by opcode availability.

The Xtensa C/C++ compiler employs sophisticated multi-level
optimizations such as function inlining, software pipelining, static
single assignment (SSA) optimizations, and other code generation
techniques to reduce code size. All of these optimizations increase
code execution speed and reduce code size. Based on industry-
standard benchmarks, the Xtensa C/C++ compiler generates the
highest code density when compared to compilers for other 32-bit
RISC architectures.

The Xtensa C/C++ compiler provides the advanced optimization
techniques known as feedback-directed optimization and
interprocedural analysis.

Feedback-directed optimization is a two-step process where code
is instrumented on the first pass of compilation and run using a
representative input data set to produce a file containing profiling
information. On the second pass, this profiling information is
used to optimize application code to further reduce branch
delays, improve inlining, and minimize the impact of register
spills. The Xtensa C/C++ compiler will optimize an application’s
critical areas for performance while optimizing the remainder of
the code for space. The Xtensa C/C++ compiler is also capable

of hardware feedback-directed optimization, in which the user’s
target hardware platform can run the instrumented code to
similarly provide application-specific optimization. Hardware
feedback-directed optimization is a much faster method and the
optimization is performed on the actual target system as opposed
to simulated in the ISS.

Ported

#include "example.h”

#include "example.h”

float floatingifloat *aData, float *aCoeff) {
int i, 3, ii:
float pov, offset:
float res, sum, wx, rn;
float =Out[PATA_LENGTH] ;

%d_go_31d overload((xd_qlsd abata, xo_lsd faCosff) (
int i, 3, ii:
xd_gf_31d pew, offset;
%d_ql5d res, sww, mc, mwa;
%d_q15d aout[DATA LENGTH] :

Only the text in the

red box needs to be
changed to convert the
source to fixed point

for(i=0: i<DATA LENGTH: i++) {
for(i=0, sum=0; J<COEFF_LENGTH; J++] {
ii = max{min(i+3j-1,DATA_LENGTH-1),0];

res = abata[ii] ¥ aCoef£[i];
sum += res;

3)

atut[i] = sum;

3 ¥

/7 Get min, max, sum & power values
wn=MAX_DATA, mx=MIN DATA, pow=0; // Tnitialize
for(i=0; 1<DATA LENGTH; i++) {

wx = wax (aOut[i],res);

wn = win(aout[i],res);

sum += aout[i]:

pow += (aCut[i] * aOut[i]):
} ¥

/f Do more processing...
return pow;

} i

for(i=0; i<DATA_LENGTH; i++) (
for(1=0, sum=0; J<COEFF_LENGTH: J++) {
11 = wax (win(i+3-1, DATA_LENGTE-1),0) ;

res = abata[ii]
sum += res:

a0ut[i] = sum;

/4 Get win, max, sum £ powsr values
nn=MAX_DATA, wx=MIN_DATA, pew=0; // Inicialize
for(i=0; i<DATA_LENGTH: i++) (

mx = max (alut[i],res);

mn = min{atut[i], res);

sum += adut[i]:

pow +=

#/ Do wore processing. ..
return pow:

* aCoeff[3]:

(@Ouc[i] * aomt[il):

Figure 4. Operator overloading makes porting existing code easier

www.cadence.com

Interprocedural analysis is an optimization method that looks
globally across all associated files of an application at link

time. Global optimization is a much more powerful method
than optimizing locally within an expression or procedure.
Interprocedural analysis examines relationships across function
calls, and can perform optimizations that cannot be achieved
with a local scope. Interprocedural analysis eliminates unneeded
computations, improves function inlining, and performs alias
analyses that may not be performed by less sophisticated
optimization techniques.

The Xtensa C/C++ compiler supports operator overloading on
custom data types in the ‘C' programming language (without the
overhead that is often associated with it).

Tensilica is well known for its ability to let designers add custom
instructions and data types to improve performance. If an
application needs to work on 56-bit data, a designer can define a
custom 56-bit data type with a single line of code. The designer
can also specify what regular ‘C’ operators, such as '+ and "*,
should do when using this data type. The overloading is always
done with zero overhead so the resulting binaries are always
efficient.

Porting and creating ‘C" application code that uses custom data
types is easier because standard ‘C’ operator syntax can be used.
This makes the code easier to read and simpler to port via changes
in the 'C’ header files rather than throughout the source code
itself. See Figure 4.

The rest of the software development toolchain is based on
standard GNU tools. The compiler front-end remains similar to the

Tensilica Software Development Toolkit (SDK)

preprocessor in the GNU tools, and the flags for the preprocessor
remain the same. The assembler and linker also utilize the same
flags as the GNU versions of the tools.

Xtensa debugger

The debugger allows you to target either the pipeline-/cycle-
accurate ISS or TurboXim when no hardware is available, or
external probes to connect with hardware development boards.
As shown in Figure 5, the GUI-based debugger allows full system
visibility into your project; it controls program execution and
provides views to variables, breakpoints, memory, registers, etc.
Source and assembly code can be made visible simultaneously
while debugging an application, and either code window can be
single stepped. The debugger interoperates seamlessly with the
other development tools (compiler toolchain, ISS) to allow rapid
code development for Xtensa processor systems.

Cores in multi-processor subsystems can be debugged and
stepped synchronously or asynchronously with the other cores.

With user-defined data formatting, any data value can be
re-formatted to display a more user-friendly representation. This is
particularly effective when dealing with non-native ‘C’ types such
as fixed point or vector data or when certain bits represent status.
This data can be displayed in the Xtensa Xplorer IDE however you
want using familiar print formatting. Datatypes that are defined by
Tensilica in its DSP engines have default formatting that will show
the user-friendly representations automatically. See Figure 6 for an
example.

X4 Debug - XTOS_Demo/main.c - Xtensa Xplorer
File Edit Source Refactor Navigate Search Project Tools Run | Window | Help
o [QR iV
Owl : O Q- &+~ AR IRA

FBmode: Off ~ P:XTOS Demo v C:XRC_D2PM

Run v Profile ¥ Debug v Trace v L A

= 0 Tie Wir 3§ Registe 53 % Breakp | & Express| %" Variabl
| % ~ LBe|learse
Name
44 AR Registers (Current Window)

&4 AR Physical Registers
44 BR Registers

%5 Debug 52

% o -0 0 @ R RT|
- XTOS_Demo - XRC_D2PM - Debug [Xtensa Single Core Launch]
ug Program: XTOS_Demo on Core: XRC_D2PM (0]
Thread (Suspended : Breakpoint)
= Omain(at C: 600-rcl
=1 _start() at 2014.0-rc1 |
Simulator Console (xt-run)
8 Console B

« i v« »

+ Disassembly 3
& =
main: -

entry a1, 80
s32i.n a2, a1, 32

[mainc 22
} -

I int main(int argc, char **argy

(" ®) 60000c30:

60000c33:

unsigned int rval;
60000c35:

unsigned int quit_count; s32i.n a3, al, 36

/* Initialize the global counter */ © 60000c37: | 132r a6, 60000860 <_stexti0x48>
® count = ©; 60000c3a: movi.n a5, @
60000c3c: s32i.n a5, 26, 4
/* Register the Interrupt handler */ 60000c3e: movi.n a10, 6
_xtos_set_interrupt_handler(6, L1_int6_timerd); 60000c40: 132r all, 6000086c <_stext+oxsd>
xtos_set_interrupt_handler(10, L3_intlo_timerl); 60000c43: calls 60008708 <_xtos_set_interrupt
-7 - - - 60000c46: movi.n al0, 10
/* 1 lize the Timers */ £ 60000c43: 132r all, 60000870 <_stext+Ox58>
xthal_set_ccompare(®, xthal_get_ccount() + TIMERO_INTE| 60000c4b: calld 60008708 <_xtos_set_interrupt
xthal_set_ccompare(1, xthal _get_ccount() + TIMER1_INTE 60000c4e: calld 6000adlc <xthal get_ccount>
60000c51: mov.n all, al0
/* ensble the timer interrupts */ 60000c53: movi.n a10, ©
__xtos ints on(TIMER® INT MASK + TIMERL INT MASK); ~ 60000cSS: addmi all, all, @x1000 <
« i y ‘ 0 ,
£3 [2 Problems| &8 Bounded Memory| 8 Code Coverage BX % Gl B eS| 2rB~-r3-°

(=]

(E=3 Eon
T:Debug * Build Active ¥ = ol 3 Pl =)
19 Help | @ Sample Browser 52 =0
XTOS Demo Sample

wto -- XTOS_Demo - XRC_D2PM - Debug [Xtensa Single Core Launch] GDB Console

Content

A single source program that initializes timers and has
custom handlers for the interrupts written in C that print

Figure 5. The Xtensa debugger allows full visibility into the system

www.cadence.com

amessage as each timer fires.
Build [wertor.c 57 =i
No special build flags require #include <stdio,h:
#include <xtensa/tie/xt_connxdZ.h>
The default core for this proj
Launch / Run int main(int argc, char **arcgv) {
int & = 0:
No special launch is require short int init = 1000, inc = 1;
interrupts are received. Term xdz_intl6x2d a vec = init:
xdZ_intlexZd ine _wec = inc;
a vec = & vec + ine vec; // Overloaded
a = *{int ¥) &a vee; // Scalar equivalent
return 0; 2 = o B
; 09= yariables £1 LB FR%T O
Mame Value
[argo 1
s o argy xe3FFFFa0
Same values for L a L
"a", Display for G4)= init 1000
"a_vec" is clearer. 69 Inc L
Using built-in = ()= a_wec 1001 1001
display format Gd=inc_vec 11
for datatype
1001 1001 —

Figure 6. Data can be reformatted the way you want it

File Edit Source Refactor

ne

Novigate Search Project Tools Run

Window _Help

Tensilica Software Development Toolkit (SDK)

W in-Ee® 3 % K Femodeott ~ B3 @
| P:Overloading LX6 v C:XRC.D2PM ~ T:Debug ~ Build Active ~ Run v Profile v Debug v Trace v
owB Q-id#-- @i g-F-eero-
g (6] nonoverload_q15.c | [g) clibranyinite | ™ = O/} Profile Disassembly 23 v =0
o . A Count Address Instruction -
* With Overloading, custom data types
*/ overload @
#include "example.h” * With Overloading, custom data types
3 -y;;:::!.; o;eri.:?d(-y_data *aData, my_data *aCoeff) { |z Sinclude "eampleh”
my_result pow, offset; my result overioad(my, data *aData, my, data *a..
_data res, sum, mx, mn; 3 Sffed2b0 entryal 48
my_data aOut[DATA_LENGTH]; i
3 for(i=0; i<DATA_LENGTH; i++) { ” .
for(j=0, sum=0; J<COEFF_LENGTH; j++) { ii = max(min(i+j-1,DATA_LENGTH-1)0);
31 ii = max(min(i+j-1,DATA_LENGTH-1),0); res = aDatalii) * aCoeff(j]:
. 1 SHed2b3 {movi a6, 0; nop; xd2_Ld16s xddS, 33,0}
w7 res » aData[id] * acoeff(3]; 1 SHed2bb {movia8,0; nop; xd2_l.dl6s xddd, 23,4 }
) B - 1 Sffed2c3 {movia9, 4 nop; xd2_Ld16s xdd3, a3, 2}
L] » shorti i i s
& Console [Profile (Cycles) (32~ Call-Graph 2 . [& Comparison |] Saved Output | &S Pipeline | 13 ISA Profile ==
g Cycles 89+ Functions calling: overload
Name Cumulative Function Children | ||| Name Count
& overload 121% 25 0 (/1) main 25
&) _call_exitprocs 116% 66 140
&) non_overload 105% 187 0
&) fini 58% 10 92
_do_global_dtors_aux 52% 39 53
&) _clibrary_init 48% 20 65
&) _init 24% 16 7
_WindowUnderflows 21% E] 0
&) _WindowOverflows 2% 35 0
&) _ateit 12% 2 0
_WindowOverflowd 1% 18 0
&) frame_dummy 09% 16 0 I~
O s i] »
<[m B
| writable | smartinsen | 5:16

Figure 7. The profiling window allows performance metric analysis while optimizing code “hot spots”

Profiling tools

Code profiling is an extremely important tool for optimizing the
performance of your application code. The Xtensa Xplorer IDE
enables you to view profiling results generated by Tensilica’s
pipeline-accurate ISS (see Figure 7). Additionally, for much
faster and more accurate profiling, you can generate profiling

File Edit Source Refactor Novigate Search Project Tools Run Window Help

data from hardware instantiated in an FPGA or ASIC. You can
track performance data such as instruction execution count,
subroutine calls, subroutine total cycles, cache performance,
etc. While viewing functions in the profiling view, you can also
simultaneously view the assembly code in the disassembly view
and the source code in the editor. The call graph view enables
you to view the entire application hierarchy’s caller and callee

o
o n-Eese i@ V% FBmode: Off ~ sl ®
| P:Overloading LX6 v C:XRC.D2PM v T:Debug ~ BuildActive ~ Run v Profile v Debug v Trace v
QWH Q- i®P-idif-F-vera-
[overload.c 52 _[d nonoverload q15.c |2 = 0O = a]
. . 2 Count Address Instruction -
* With Overloading, custom data types
-/ my_result pow, offset;
#include "example.h” my_data res, sum, mx, mn;
3 my_result overload(my_data *aData, my_data *aCoeff) { my_dat aOWt[DATA_LENGTH]; E
short i, j, ii; o i
-y_resultjpow, offset; for(i=0; i<DATA_LENGTH; i++) {
“data res, sum, mx, mn; Sffed2ch__{ movi a4, 5; xd2_movi.dd0 xdd2, 0; addi a5, al, ..
my_data aOut[DATA_LENGTH]; 1 S5ffe02d3 nop.n
5 L DATANUENGTISEEE)] 1 Sffe02d5 looptz 4, Sffe038c <overload- Oxde>
, sum=; j<COEFF_LENGTH; j++) { ii = max(min(i+j-1,DATA_LENGTH-1)0);
31 ii'= max(min(i+j-1,DATA_LENGTH-1),0); res = aDatalji] * aCoeffj];
sum += res;
137 res = abata[ii] * aCoeff[j];
sum += res; !
Y hd 20utfi] = sum;
< » 6 SHe02dR L addi a3 a6 1 non xd? <d16 xdd) 25 2} S
= Console | [Profile (Cycles) (32~ Call-Graph [Comparison | B Saved Output & Pipeline 53 [15A Profile | L7=8
5ffe02b0 entry al, 48 =
sffe02b3 {movi a6, 0; nop; xd2_1.d16s xdds, a3, 0} E|
Sffe02bb { movi a8, 0; ; xd2_I.d16s xdd4, a3, 4 }
sffe02c3 ia9 4 a3 2
' movi.dd0 xdd2, 0
sffe02d3 nop.n
Sffe02dS loopgtz a4, 5ffe038¢ <overload+0xdc>
sffe02d8 {addi a3, a6, -1; nop; xd2_s.d16 xdd2, a5, 2}
sffe02e0 biti a6, 5, 5ffe02e6 <overload+0x36>
sffe02e3 min a3, a3, a9
5ffe02e6 sext al0, a3, 15
Sffe02e9 addx2 a10, a10, a2
Sffe02ec xd2_I.d16s xdd1, a10, 0
Sffe02ef {xd2_mul.f40.d165.ll xdd1, xdd1, xdds; nop; nop }
Sffe02f7 {xd2_sat32.d40s xddo0, xdd1: nop; nop }
Sffe0: {xd2_srai.d32s xdd0, xddo0, 16; nop; nop }
5ffe0307 {xd2_add.s.d16s xdd0, xdd2, xdd0; nop; addi a7, a6, 1 ~
<[» || sffeo3of {xd2_s.d16 xddo, a5, 2; nop; mov.n a3, a8 } « (i »

Figure 8. The pipeline viewer helps you understand instruction stalls and latency issues

www.cadence.com

functions. For those inner loop optimizations, the graphical
pipeline view (Figure 8) shows any pipeline inefficiencies and
bubbles that may be occurring.

Profiling of multi-processor subsystems shows each core side by
side for easy load assessment and re-partitioning guidance. See
Figure 9.

Cycles

15,000

M |Cache Miss Cycles

M DCache Miss Cycles

M Uncached Instruction Fetch
M Uncached Load Cycles

W Interlock Cycles

M Branch Delay Cycles

M Total Cycles

10,000

5,000 —

corel

core0

Figure 9. Multi-core profiling

File Edit Source Refactor Navigate Search Project Tools Run Window Help

o

Tensilica Software Development Toolkit (SDK)

Vectorization Assistant

Vectorization is the process of transforming the flow of your

code (from the usual handling of one data item at a time) into a
parallel loop that operates on multiple data items at once. The
Xtensa compiler is capable of performing this transformation
automatically, but you can help it exploit implicit parallelism in your
code by eliminating certain patterns of data access that prevent
successful vectorization.

Figure 10 shows how the Vectorization Assistant finds and displays
loops in your code that could be “vectorized” by the compiler if
the source was tweaked. Locating areas in the code that have not
been vectorized, but could be, can take a long time looking at
profiles, assembler, and pipeline views—then you have the task

of doing the optimization to make it vectorize. In a few clicks, the
Vectorization Assistant gets you to the loops in your source code
that would benefit the most from vectorization.

The list of messages shown is initially sorted by the number

of processor cycles used by a given loop, such that the most
expensive loops appear first. You can focus the view on a
particular file, folder, or project; you can filter out certain classes
of messages that are not currently interesting; and you can hide
messages that you do not wish to address at the moment.

< nrEad Q% FBmode:Off ¥ Picjpeg v C:hifi3bdS v T:Release v Build Active ¥ s @
Run v Profile v Debug * Tace ~ - QWE Q- ® & - B §-§l - &~ -
8 % O[[djecolore [[dl iprintfc ([dbmp.c &2 = O (dfh Profile Disassembly £2 v=a
P Lu 128 o Count Address Instruction &
129 /* Fetch next row from virtual array */ - F r— .
768130 source->source_row--; 1* Fetch net row from vitual arwy %/
1792131 image ptr = (*cinfo->mem->access_virt_sarray) source->source_row--;
132 ((j_common_ptr) cinfo, source->whole_image, 256 60005a8d 532212, a3,36
;; i ce_row, () 1, FALSE); @ image_ptr = (“cinfo-> mem-> access_virt_sarray) ‘j
135 /* Expand the golormap indexes to real data */ 0.|| 0000500 | caltsh ¥ -
768136 inptr = image_ptr[@]; ((l_common_ptr) cinfo, source->whole_image,
;121 37 :utpzr ; swzci '>P"mb~ buff:;[:]z STy source->source_row, (JDIMENSION) 1, FALSE);
12138 for (col = cinfo->image_width; col > @; col-- . B N
€5K139 ¢ = GETISAMPLE(*inptrit); / Expm?dlhz colormap indexes to real data */
262K140 *outptr++ = colormap[@][t]); /* can omit GETISAMPLE() si inptr = image_ptr{0};
| 262x141 *outptr++ = colormap[1][t]; 768 60005293 132i.n 210, 310, 0
458K142 [SSOUtptnt = colormap 2] [t]; outptr = source-> pub.buffer(0);
9%, 2% 6000595 [32insll, 3,16
512145 IRERTRENRTS ~ for (col = cinfo->image_width; col > 0; col-) {
< {o— 1 J 3 | 256 60005297 132in 214, 82, 28 >
(=] Cnnsole' Profile (Cycles) ib- Call-Graph E Comparison ‘E Saved Output EPipdine 'IISAPmﬂIQI‘H Vectorization Assistant 53 =)
File/Line Function . Cycles Instructions Ve.. Msgld Message &
rdbmp.ci138 get 8bit_row..G_1406586646 1,049,600 983808 n SIMD_LOOP_NON_VECTORIZABLE Loop is not vectorizable. O
rdbmp.c:i138 get 8bit_row..G_1406586646 1,049,600 983,808 n_ SIMD_LOOP_NON_VECTORIZABLE Loop is not
rdbmp.c:139 get_8bit_row..G_1406586646 tdbmp-c:us-lll’ (get_8bit_row..G_1406586646) [0:60005aa3])) essor configuration does ...
rdbmp.c139 g et 8bit_row..G_1 65t dbmp.c:140: nolo:(SlMD,ARRAV_ALIASJi »7lnly h,‘fio,m?,“., }5 aliased with array base ‘2" at llril.?& essor configuration does ..
rdbmp.c:140 get 8bit_row..G_1406586646 1,049,600 983808 n SIMD_ARRAY_ALIAS Array base 'outptr is aliased with a...
rdbmp.c:140 get 8bit_row..G_1406586646 1,049,600 983,808 n SllExplain Array base ‘outptr’ is aliased with a...
Sl dASEAS4E = % 983,808 n Slshow Source Array base ‘outptr’ is aliased with a...
983,808 n Slliide Selected File Array base ‘outptr’ is aliased with a...
;‘,’,‘_g{z‘w siinsed with arroy base st ine 139, 983,808 n Slliide Selected Function Array base ‘outptr’ is aliased with a...
e N 983808 n Sllyide Selected Loop Array base ‘outptr' is aliased with a...
Y o = 983,808 n Slynnide All Array base ‘outptr’ is aliased with a...
983,808 N Sliier Similar Messages Array base ‘outptr' is aliased with a...
983,808 N SlEocus Out Array base ‘outptr’ is aliased with a...
<G E 983,808 N Slegcusin Array base ‘outptr' is aliased with a... ~
| Wiitable Smortlnset | 139:16

Figure 10. Vectorization Assistant helps find areas that can be improved

www.cadence.com

SoC Modeling

Many SoC designs today employ multiple processors. As SoC
design becomes more complex, new methods to describe, debug,
and profile overall system performance need to be employed.
Unfortunately, most software development tools vendors do not
provide pre-silicon simulation environments for multi-processor
SoCs. Tensilica offers two modeling tools: XTensa Modeling
Protocol (XTMP) for modeling in C and XTensa SystemC (XTSC) for
modeling in SystemC.

Both tools are powerful additions to Tensilica’s software
development toolkit. They provide an Application Programming
Interface (API) to the ISS, allowing fast and accurate simulation of
SoC designs incorporating one or more processor cores. Running
up to 10,000 times faster than RTL simulators, the XTMP/XTSC
environments are potent tools for software development and
SoC design. Both tools give you the ability to rapidly explore SoC
partitioning alternatives and hardware/software performance
tradeoffs. See Figure 11.

Modeling

Use XTMP/XTSC to instantiate and connect models/RTL

Xtensa ISS
Libraries

Compile and
Link on Host

Application
Code
User Device

Models

Figure 11. Using the ISS with XTMP or XTSC for modeling

XTMP and XTSC are used for simulating homogeneous or
heterogeneous multi-processor design subsystems as well as
complex uniprocessor architectures. Use the Xtensa Xplorer IDE's
multi-processor project to instantiate multi-processor subsystems
(or do it manually) and optionally connect them to custom
peripherals and interconnects. You can create, debug, profile,
and verify combined SoC and software architectures early in the
design process. As the simulator operates at a higher level than
HDL simulations, simulation time is cut drastically. See Figures 12
and 13.

XTMP and XTSC are integrated into the Xtensa Xplorer IDE, which
automates the creation and development of multi-processor
subsystem simulations. For XTMP, simulations are described in
standard C code, which you can modify to allow more complex
systems and additional simulator control if required. For XTSC,
simulations are described in standard SystemC code. In addition,
you have full visibility into all aspects of the simulation through
the extensive API. Designers can use a single Xtensa Xplorer IDE
to debug all simulated cores for additional visibility. The Xtensa
Xplorer IDE manages all of these connections for you in its IDE for
simplicity and easy viewing of any core.

www.cadence.com

Tensilica Software Development Toolkit (SDK)

Modeling with XTMP

XTMP
Device A i | Device B
Model i \ Model
0 0
1 1
Producer Core Consumer Core
XTMP_core = XTMP_« (" ", config) ;
XTMP_core p = XTMP_ (”prod ", config) ;

XTMP_queue fifo = XTMP_queueNew (”fifo”,
XTMP Queue (fifo,

width, depth);
“FIFO_OUT”,

consumer, (“FIFO_IN");

Figure 12. XTMP provides a simulation environment using instantiations
of multi-processor-capable 1SS, memory models, and connectors

Modeling with XTSC

XTSC

Device A Device B

RTL =

SystemC SystemC

Consumer Core

xtsc-run

-set_queue_parm=depth=4
-create_core=Producer

Producer Core

._core_q ,FIFO_OUT, fifo

-create_core=Consumer
-connect_queue_core=fifo,FIFO_IN,Consumer

Figure 13. With its pin-level modeling capabilities, XTSC allows
co-simulation with Verilog

Modeling of local and system memory

XTMP and XTSC allow memory modeling of both local and system
memory. System memory can have programmable latencies
specified for different transaction types, allowing an accurate
system simulation for analyzing performance tradeoffs. Memory-
mapped peripherals may be included in an XTMP/XTSC system
simulation, and functions are provided to connect the processor to
peripheral devices.

Multi-threaded environment

An XTMP or XTSC simulation runs in a multi-threaded
environment, with each processor running in its own thread. Core
threads can be run asynchronously or synchronized through events
using the attached debugger. Another option is to run all cores in
lock-step, cycle-by-cycle mode. If one core stops on a break, all
cores stop until it resumes. XTMP and XTSC have many options
for implementing, controlling, and displaying results of system
simulations deploying multiple cores, memories, and user-defined
devices.

Pin-level SystemC modeling with Verilog

Additionally, Tensilica provides a link between its pipeline-accurate,
cycle-accurate ISS and the leading Verilog simulators. Designers
can now run pin-level SystemC co-simulations of Tensilica DPUs

in their native Verilog simulators with pin-level XTSC, as seen in
Figure 13.

Relative performance for different modeling levels

The wide range of choices allows customers to trade off speed
versus model accuracy and pick the best type of model for the
task at hand. Fast functional simulation gives the equivalent of
20-50 MIPS and is accurate to the CPU clock cycle level, while a
full Verilog gate-level model may run only 10-100 cycles/sec but
provides the accuracy needed to verify detailed timing. The range
of modeling options and their estimated relative performance is
summarized in Table 1.

cadence

Simulation Speed
20 to 50 MIPS'

Tensilica Software Development Toolkit (SDK)

Modeling Tool

Standalone ISS in
TurboXim mode

Benefits

Fast functional
simulation for
rapid application
testing

1.5 to 40 MIPS"?

XTMP or XTSC in
TurboXim mode

Fast functional
simulation for
rapid application
testing at the
system level

800K to 1,600K
cycles/second

Standalone ISS
in cycle-accurate

Software
verification and

mode cycle accuracy
600K to 1,000K XTMP in cycle- Multi-core
cycles/second? accurate mode subsystem

modeling and
cycle accuracy

350K to 600K
cycles/second?

XTSCin cycle-
accurate mode

Multi-core
subsystem
modeling with
SystemC interfaces
and cycle accuracy

1K to 4K cycles/
second

Verilog RTL
simulation

Functional
verification,
pipeline-cycle
accuracy and
high visibility and
accuracy

10 to 100 cycles/
second

Verilog gate-level
simulation

Timing
verification,
pipeline-cycle
accuracy and
high visibility and
accuracy.

1. TurboXim mode simulation speed is an estimate for relatively long-running
application programs (1 billion instructions or more)

2. Simulation speed is an estimate for a single Xtensa core in XTMP or XTSC

3. Running on a typical low-cost dual-core workstation

Summary

Table 1. Modeling Performance

The Xtensa Xplorer IDE is a complete GUI-based collection of tools
that allows the software developer to create code for systems
based on Xtensa processors. From project implementation to code
generation to analysis, the Xtensa SDK enables you to achieve

fast time-to-market while employing one of the most efficient
32-bit architectures available today. Xtensa processors lower

total system costs and help design teams construct extremely
high-performance system architectures.

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today's electronics. Customers use Cadence software, hardware, IP, and expertise to design

and verify today’s mobile, cloud, and connectivity applications. www.cadence.com

© 2014 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, Tensilica, and Xtensa are registered trademarks
and Xplorer is a trademark of Cadence Design Systems, Inc. in the United States and other countries. All other trademarks are the property of
their respective owners. 08/14 2768 SA/DM/PDF

